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a b s t r a c t

Transient conjugated heat transfer in thick walled pipes for thermally developing laminar flow is inves-
tigated involving two-dimensional wall and axial fluid conduction. The problem is solved numerically by
a finite-difference method for hydrodynamically developed flow in a two-regional pipe, initially isother-
mal in which the upstream region is insulated and the downstream region is subjected to a suddenly
applied uniform heat flux. A parametric study is done to analyze the effects of four defining parameters
namely, wall thickness ratio, wall-to-fluid thermal conductivity ratio, wall-to-fluid thermal diffusivity
ratio and the Peclet number. The results are given by non-dimensional interfacial heat flux values, and
it is observed that, heat transfer characteristics are strongly dependent on the parameter values.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Analysis of conjugated heat transfer in transient regime is
important during start up, shutoff or any change in the operating
conditions. This problem may be faced in regenerative and recu-
perative heat exchangers, in cooling of gas turbine blades, in nucle-
ar reactors, aircraft engines and spacecrafts, and is more likely to
be analyzed in pipes or in flow sections which can be modeled as
a pipe or channel.

Transient heat transfer for laminar pipe or channel flow was
analyzed by many investigators and in some of them the pipe wall
is considered extremely thin. In this case the wall conduction may
be ignored and the condition at the outer wall surface can be as-
sumed to prevail along the inner surface. However, in thick walled
pipes the conditions at the wall–fluid interface are not known a
priory and the energy equations must be solved simultaneously
by assuming continuity in temperatures and in heat fluxes at the
interface. When Peclet number of the flow is low, the axial fluid
conduction may be comparable to convection and can not be ig-
nored. Diffusion of heat backward through the upstream region, re-
sults preheating of the fluid before the beginning of the heating
section. Therefore such problems are usually analyzed in two-re-
gional pipes. A brief literature survey on steady conjugated prob-
lems and on the effect of axial fluid conduction is given in [1,2].
A more recent survey on the subject may also be found in the paper
of Weigand and Gassner [3]. They studied a conjugate extended

Graetz problem analytically for pipes with a step change in con-
stant outside wall temperature in a finite region.

Unsteady conjugated problems for laminar flow considering one
or two-dimensional wall conduction and fluid axial conduction
were also studied by many investigators under various boundary
conditions. Schneider [4] solved the problem for parallel plates
and Vick et al. [5] for pipes with uniform flow and convection from
the outer surface by analytical methods. Campo and Auguste [6]
worked on a problem with parabolic velocity profile and both with
convective and radiative boundary conditions. Numerical methods
are used for solving the problem in pipes, heated in finite length,
with a step change in heat flux, by Lin and Kuo [7] and in tempera-
ture, by Yan et al. [8]. With variable inlet fluid conditions in parallel
plates, the problem is investigated by Travelho and Santos [9], with
uniform flow, and by Olek et al. [10], with parabolic flow. Yapıcı and
Albayrak [11] solved a problem with non-uniform heat fluxes and
Yin and Bau [12] with and without axial fluid conduction.

Recently numerical methods were used in investigations con-
sidering two-dimensional wall and axial fluid conduction. Schutte
et al. [13] solved the problem, for combined development region,
Lee and Yan [14], Bilir [15] and Zueco et al. [16], with step change
in wall temperature, Yan [17] and Bilir and Ates� [18], with convec-
tive boundary conditions and Li and Kakaç [19], with step and
sinusoidal change in wall heat flux, Luna et al. [20], for power-
law fluids with step change in wall heat flux.

2. Problem formulation

The schematics of the problem and the coordinate system are
shown in Fig. 1. The flow pipe is two-regional and infinite in
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both sides. At the far upstream, the fluid temperature is T0 and
uniform. The upstream region of the pipe wall is externally insu-
lated; the flow is laminar and hydrodynamically developed at
the beginning of the downstream region. Initially the whole sys-
tem is isothermal at temperature T0, and at time t = 0 a constant
and uniform heat flux qwo is suddenly applied on the external
surface of the downstream side of the pipe. Physical properties
of the fluid are assumed to be constant and the viscous dissipa-
tion is neglected.

The above-described problem may be formulated in non-
dimensional form as follows. In the wall side, the differential equa-
tion is

1
awf

@T 0w
@t0
¼ 1

r0
@

@r0
r0
@T 0w
@r0

� �
þ 1

Pe2

@2T 0w
@x02

: ð1aÞ

The initial and boundary conditions are

at t0 ¼ 0 T 0w ¼ 0; ð1bÞ

at x0 ¼ �1 T 0w ¼ 0; ð1cÞ
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Nomenclature

a constant of discretization equation (Eqs. (6a)–(6j))
cp specific heat at constant pressure
d thickness of the pipe wall
Fo Fourier number
Gz Graetz number
k thermal conductivity
Nu Nusselt number
Pe Peclet number
q heat flux
r radial coordinate
t time
T temperature
T0 initial temperature of the system
u axial velocity
x axial coordinate

Greek symbols
a thermal diffusivity
dr radial position difference
dx axial position difference

Dr radial step size
Dt time step increment
Dx axial step size
e relative error
q density

Subscripts
b bulk
f fluid
i inner wall
i, j at nodal point i, j
m mean
o outer wall
w wall
wf ratio of wall to fluid

Superscripts
0 dimensionless quantity
0 at previous time step

Fig. 1. Schematics of the problem and the coordinate system.
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