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a  b  s  t r  a  c  t

Metabolic  time  series  data  are  being  generated  with  increasing  frequency,  because  they contain  enor-
mous  information  about  the  pathway  from  which  the metabolites  derive.  This  information  is  not  directly
evident,  though,  and  must  be extracted  with  advanced  computational  means.  One  typical  step  of  this
extraction  is the estimation  of  slopes  of the  time  courses  from  the  data.  Since  the data  are  almost  always
noisy,  and the  noise  is typically  amplified  in  the  slopes,  this  step  can  become  a critical  bottleneck.  Several
smoothers  have  been  proposed  in  the literature  for this  purpose,  but they  all face  the  potential  problem
that  smoothed  time  series  data  no longer  correspond  to a system  that  conserves  mass  throughout  the
measurement  time  period.  To  counteract  this  issue,  we  are  proposing  here  a smoother  that  is  based  on
wavelets  and,  through  an iterative  process,  converges  to a mass-conserving,  smooth  representation  of
the metabolic  data.  The  degree  of  smoothness  is  user  defined.  We  demonstrate  the  method  with  some
didactic  examples  and  with  the  analysis  of actual  measurements  characterizing  the  glycolytic  pathway
in  the  dairy  bacterium  Lactococcus  lactis.  MATLAB  code  for the  constrained  smoother  is available  as a
Supplement.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction – motivation

Data characterizing genomic, proteomic or metabolic processes
in the form of time series measurements contain very valuable, yet
implicit information about the structure and dynamics of biologi-
cal systems. In an effort to gain deeper insight into these systems,
numerous recent articles have been addressing the extraction of
this information and its integration into functional models, which
may  subsequently be utilized for explanation, prediction, manipu-
lation, and optimization. The majority of methods for the extraction
of information from time series employ techniques for minimizing
the discrepancy between the measured data, i.e.,  the time profiles,
and the assumed model, which typically consists of a system of
non-linear ordinary differential equations that are to be parame-
terized (Chou and Voit, 2009). The currently available estimation
techniques include different regression, simulated annealing, or
evolutionary optimization approaches, such as genetic algorithms,
as well as various support algorithms for preprocessing the data.
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The latter algorithms are intended to reduce noise and smooth the
time courses, which naturally are often quite ragged.

Dynamic flux estimation (DFE) (Goel et al., 2008) is a method-
ological framework for extracting information from time series
measurements. It is distinct from all other methods, as it does
not presume knowledge of an appropriate underlying model. DFE
combines the tenets of stoichiometric (Gavalas, 1968; Heinrich and
Schuster, 1996; Stephanopoulos et al., 1998) and flux balance anal-
ysis (FBA; e.g., (Palsson, 2006)), which are genuinely static, with
dynamic aspects of ODE modeling. DFE consists of two phases.
The first phase is model-free and essentially assumption-free and
includes steps of data preprocessing, time course smoothing, and
slope estimation, and ultimately yields point-wise inferences of
dynamic time series profiles for all fluxes in the system. Expressed
differently, the first phase results in a numerical representation of
flux values throughout the time period of the experiment. One must
note, however, that this numerical representation does not directly
reveal optimal, or even appropriate explicit functional forms that
capture the dynamics of the fluxes in the system. The second phase
addresses this issue. It consists of the mathematical characteriza-
tion of the numerical flux profiles, based on an assumed format.
Fig. 1 summarizes the phased approach of DFE and the expected
outcomes of each step.
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Fig. 1. Phases and steps of the dynamic flux estimation (DFE) technique utilized for metabolic time-series data.

While the performance of DFE can be excellent, it has the sig-
nificant drawback that a direct application of the method requires
a stoichiometric matrix that has full rank. This is seldom the case,
because most pathway systems contain more fluxes than metabo-
lites. Several auxiliary methods have been proposed that “fill the
rank” with additional information ((Chou and Voit, 2012; Iwata
et al., 2013; Voit et al., 2009); see also (Voit, 2013)) but none of
them presents a perfect solution.

A secondary issue of a more computational nature is the need
for using slopes of the time courses in the model-free phase. On the
one hand, the use of slopes is very advantageous, because parame-
ter values may  be estimated without the integration of differential
equations (Varah, 1982; Voit and Savageau, 1982a,b). Indeed, the
integration of a system of differential equations is computationally
expensive and prone to a host of technical challenges, associated
with complicated error surfaces that can contain numerous local
minima (Voit and Almeida, 2004). On the other hand, the slopes
are rather sensitive to noise in the time courses, which renders
it necessary to smooth and balance the data. Smoothing reduces
noise, while balancing assures that there is no gain or loss of mass
over time in a closed system.

Numerous methods have been proposed for smoothing time
course data. They include splines, moving average algorithms, finite
difference approximations, and various types of non-linear pro-
gramming (Eilers, 2003; Vilela et al., 2007; Whittaker, 1923). These
methods are time consuming and need to be performed interac-
tively, or at least in a closely supervised manner. Furthermore,
this type of smoothing process can lead to secondary issues. Espe-
cially important for the purposes of metabolic pathway analysis
is the potential problem that the overall mass in a system may  no
longer be constant if the data are smoothed. To address these issues,
we propose here an automated smoothing technique that takes as
input any given data set and estimates and removes noise while
at the same time satisfying the required mass balance within the
system. The proposed approach is iterative and called constrained
iterative wavelet-based smoother (CIWS).

2. Background and data

2.1. Multiresolution analysis using wavelets

The proposed smoothing technique is built upon the notion of
multiresolution analysis (MRA) from wavelet theory which we will
briefly explain here.

Wavelets are becoming a standard data analysis tool that is
excellent for tasks of data compression as well as for denoising and
smoothing. One of their advantages is that they are flexible as well
as local, which means that they do not ignore desirable functional
details. The reason is that the resolution in MRA  can be adapted to
the situation at hand.

Mathematically speaking, wavelets are orthogonal basis func-
tions which span the space of all square-integrable functions
(L2(R)). Thus, any element in L2(R) may  be represented as a possibly
infinite linear combination of these basis functions. An important
property of this linear representation is that it may be partitioned
into orthogonal subspaces Wj = span[ j,k(x)], each of which cap-
tures a certain level of “detail” information. The key concept of
orthogonal MRA  is to partition a given function f(x) into its com-
ponents f(j)(x) ∈ Wj. Here, the space Wj consists of functions with
lower resolution than the ones in Wj+1 which means that if some
arbitrary function g(x) is in Wj, then g(2x) is in Wj+1 (Strang, 1989).

For example, in the traditional wavelet representation

f (x) =
∑

k∈z
CJ0,k�j0,k(x) +

∑
j≥j0,k∈Z

dj,k j,k(x)

the second sum contains the terms which capture the higher levels
of detail (i.e., Uj≥j0Wj , which is the union of all levels of detail greater
than or equal to Jo). Choosing the appropriate coarsest resolution
J0 gives rise to different transforms. We  can also just approximate

f (x) ∼=
∑

k∈Z
cJ0,k�J0,k(x).

The choice of J0 provides us with the flexibility of selecting the
desired level of detail, which is traded against the desired level of
smoothness. In the above representation of f(x), the functions

�J0,k(x) = 2j/2�(2jx − k)

and  j,k(x) = 2j/2 (2jx − k) are scaling and wavelet functions, which
correspond to commonly called “smooth” and “detail” coefficients,
respectively; j is the dilation/scale index, and k indicates shift or
position (Vidakovic, 1999).

In wavelet decomposition, as mentioned before, the wavelet
coefficients represent details, and if these are small, they can actu-
ally be removed without affecting the general trend of the data.
In fact, wavelet transformations are known to be parsimonious in
that they can be well described by a relatively small number of
“energetic” wavelet coefficients.

Wavelet thresholding is the process of removing the wavelet
coefficients that are smaller in magnitude than some threshold �.
The resulting signal, after the inverse wavelet transformation, is
expected to have its noise removed or at least reduced. The char-
acteristics of the data determine the magnitude of noise, and it is
therefore useful to specify the threshold value magnitude of noise,
and it is therefore useful to specify the threshold � based on the
variability of the data at hand. Different thresholding policies and
threshold values are discussed in Section 4 in more detail.

All wavelet computations were performed in WaveLab, a MAT-
LAB wavelet toolbox available from the website of Stanford
University (Buckheit and Donoho, 1995). Sample MATLAB codes
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