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a b s t r a c t

Buoyancy-driven motion in the laminar forced convection flow has been investigated in a horizontal por-
ous channel. The stability equations including the inertia and the dispersion effects have been solved ana-
lytically under the linear theory and also the principle of exchanges of stabilities. The resulting critical
position xc for the onset of convection becomes larger with increasing the Reynolds number, ReK consid-
ering the permeability. This means that the more inertia and dispersion make the system more stable.
The ionic mass transfer experiments using the limiting current technique have been conducted to obtain
the critical position for the manifest convection, i.e. the undershoot distance xu with comparison of the
forced convective mass flux with the mixed-convective one. Based on the experimental results, the iner-
tia and dispersion effects are explained reasonably for the stabilization of the present system.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The convective motion driven by the buoyancy forces appears
in the fluid-saturated porous layer subjected to heating from be-
low. This is well known as the Horton–Rogers–Lapwood problem
[1,2]. The convection in porous media plays an important role in
science and engineering applications, such as mantle recurrence,
oil recovery, storage of grain and nuclear reactor safety. An inter-
esting extension of the Horton–Rogers–Lapwood problem is the
mixed convection under the weak through flow [3]. Many studies
on the transient behaviors the mixed convection in the porous
layer have been carried out after Prats [4] analyzed the time-
dependent oscillating motion. Combarnous and his colleagues
[5,6] showed that the phase transition of the time-dependent
transverse rolls to the steady longitudinal vortices appears while
the rate of through flow increases. Dufour and Neel [7] suggested
the criteria on the absolute and convective instabilities using the
weakly-nonlinear analysis. Recently, Chung et al. [8] suggested
the reasonable stability criteria for the fluid-saturated porous med-
ia under the forced convection using both linear and weakly non-
linear analyses, and also the direct numerical simulation.
According to the survey of previous analyses, it seems that the lon-

gitudinal vortices dominate the transverse rolls for the specific re-
gion where an inertial effect is dominant.

These works are mainly focused on the systems with the fully-
developed base fields. For the various systems experiencing the
developing nonlinear base fields, Choi and his colleagues [9–12]
have analyzed the onset of the vortex instabilities successfully by
employing their propagation theory. Lee et al. [11] examined the
laminar vortex instability on the natural convection flow over the
inclined surface embedded the porous layer, where the limiting
current method in an electrochemical system has been done for
promising the trend line of their stability conditions consistently.
For a forced convection flow through the porous media, Chung
et al. [12] analyzed the onset of the convective instability including
the inertia and the dispersion effects. They showed that these ef-
fects make the system stable.

The experimental detection on the natural convection for a high
Rayleigh number is very difficult due to the side effects and the dif-
ficulties in the control of boundary conditions. Furthermore, the
observation of the convective motion in the porous media is hardly
detected due to the structural complexity. To overcome the above
mentioned problems, electrochemical systems [13–15] under the
limiting current condition [16] have been used in the natural con-
vection fields especially for the very large Rayleigh number situa-
tions. Lee et al. [11] showed that this method can be extended to
the system of the fluid-saturated porous media. In the porous
media systems, the dispersion effect caused by the variation of

0017-9310/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijheatmasstransfer.2010.07.049

* Corresponding author. Tel.: +82 64 754 3685; fax: +82 64 755 3670.
E-mail address: mckim@cheju.ac.kr (M.C. Kim).

International Journal of Heat and Mass Transfer 53 (2010) 5139–5146

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.07.049
mailto:mckim@cheju.ac.kr
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.07.049
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


porosity, the thermal deviation between solid and fluid, and the
fluid velocity [17–20] plays an important role in the determination
of stability criteria. But, the stabilization from the buoyancy forces
due to the dispersion effects is not examined yet for the convective
flows in a horizontal porous channel.

In the present study, we will analyze the onset of a buoyancy-
driven instability for the laminar convection flow through the por-
ous layers. The stability condition from the linear stability analysis
will be compared with the electrochemical mass transfer experi-
ment. Based on the comparison between the theoretical and exper-
imental results, the inertia and the dispersion effects on the onset
of buoyancy-driven secondary motion will be quantified.

2. Theoretical analysis

2.1. Governing equations

The mass transfer system considered here is a fluid-saturated
porous layer with uniform superficial velocity U0 and uniform con-
centration in Ci the fully-developed laminar flow (see Fig. 1). The
porous layer is confined between two horizontal plates of depth
H. The lower and upper plates are kept at constant concentration
Cl and Cu, respectively. For a small distance in the streamwise X-
direction, the nonlinear concentration profile develops gradually.
For X > 0, the laminar concentration boundary-layer thickness DC

increases with increasing X, and the buoyancy-driven secondary
flow will set in at a certain distance. For the isotropic porous med-
ia, the governing momentum equation is expressed using the
Forchheimer’s equation, Boussinesq approximation and dispersion
model:

l
K

Uþ cFqffiffiffiffi
K
p jUjU ¼ �rP � kqbgC; ð1Þ

where U is the superficial velocity vector and k is the unit vector of
positive Z-direction. And the general governing equations for the
continuity and mass balances are as follows:

r � U ¼ 0; ð2Þ
@C
@t
þ U � rC ¼ r � DrCð Þ; ð3Þ

where t and D denote the time and the dispersion tensor, respec-
tively. Hsu and Cheng [17] suggested that D ¼ De þ APen

d , where
De is the effective diffusivity, and A is the constant 2nd-order tensor
which is diagonal. They assumed n = 1 for high Red and n = 2 for low
Red. Here, Ped(= U0d/De) and Red(= qUdd/l) is the Péclet number and
the Reynolds number based on the particle diameter d, respectively.

PeK ¼ U0cF

ffiffiffiffi
K
p

=De

� �
and ReK ¼ qU0cF

ffiffiffiffi
K
p

=l
� �

which use
ffiffiffiffi
K
p

as a

length scale is more general parameters for the non-spherical por-
ous matrices.

Nomenclature

a dimensionless wave number
a* modified wave number, a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cLÞx

p
C concentration (mol/m3)
cF dimensionless form drag constant
c0 dimensionless base concentration, (C0 � Ci)/DC
c dimensionless concentration disturbance, RaC1/DC
D the dispersion tensor (m2/s)
d particle diameter (m)
De effective diffusivity (m2/s)
Da Darcy number, K/d2

g gravitational acceleration (m/s2)
H fluid layer depth (m)
hL average mass transfer coefficient (m/s)
K permeability (m2)
P pressure (Pa)
Pe Péclet number, U0H/De

Ped Péclet number based on particle diameter, U0d/De

PeK Péclet number based on permeability, U0cF
ffiffiffiffi
K
p

=De

Ra Rayleigh number, qgbDCH3/(Del)
RaD Darcy–Rayleigh number, DaRa
Ra�D modified Darcy–Rayleigh number, RaDx1=2= 1þ ReKð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cL

p
Red Reynolds number based on particle diameter, qUdd/l
ReK Reynolds number based on permeability, qU0cF

ffiffiffiffi
K
p

=l
Sc Schmidt number, l/(qDe)
Sh Sherwood number, hLH/De

t time (s)
(U,V,W) velocities in Cartesian coordinates (m/s)
(u,v,w) dimensionless velocity disturbances in Cartesian coordi-

nates

(X,Y,Z) Cartesian coordinates (m)
(x,y,z) dimensionless Cartesian coordinates

Greek symbols
b concentration expansion coefficient (m3/mol)
c ratio of dispersion coefficient to effective diffusivity, D/

De � 1
DC concentration boundary-layer thickness (m)
e porosity
f dimensionless similarity variable, z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cLÞx

p
l viscosity (Pa s)
q density (kg/m3)
s dimensionless time, Det/H2

Subscripts
0 basic quantities
1 perturbed quantities
b bulk condition
c critical conditions
e effective properties
i inlet state
L longitudinal direction
l lower plate
T transverse direction
u upper plate

Superscript
* quantities in (x,f)-domain

Fig. 1. Schematic diagram of the system considered here.
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