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a  b  s  t  r  a  c  t

The  extended  Kalman  filter  (EKF)  remains  the  most  preferred  state  estimator  for  solving  both  uncon-
strained  and  constrained  state  estimation  problems  in  the  field  of  Chemical  Engineering.  Given,  the  wide
spread  use  of  EKF,  we  have  proposed  a novel  optimization  free  recursive  formulation  of  the EKF,  to han-
dle elegantly  bounds  on  the estimated  state  variables  of a  stochastic  non-linear  dynamic  system.  It is
well  known  that  in  the  EKF,  the  prior  and  posterior  distributions  are  approximated  to  be  a  multivariate
normal  distribution.  In  the  presence  of  bounds  imposed  on  the  state  variables,  the  accuracy  of  the first
two  moments  of  the  initial  state  distribution  and  prior  distribution  namely  the means  and  covariance
matrices,  plays  a  significant  role  in  the  extended  Kalman  filter  performance.  Hence,  in this  paper,  we
propose  two  novel  schemes  to modify  the prior  and  posterior  distributions  of the EKF  in order  to  satisfy
the  bound  constraints.  In  addition,  the  initial  state  distribution  is also  suitably  modified  in  order  to  satisfy
the  bound  constraints.  The  efficacy  of  the  proposed  state  estimation  schemes  using  the  EKF  is validated
on  two  benchmark  problems  reported  in  the  literature  namely  a  simulated  gas-phase  reactor  and  an
isothermal  batch  reactor  involving  constraints  on  estimated  state  variables.  Extensive  simulation  studies
show  the  effectiveness  of the  proposed  optimization  free  recursive  constrained  state  estimation  schemes
using  extended  Kalman  filter.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Nonlinear state estimation is an active research area and
significant amount of work has been carried out in the Chemi-
cal Engineering discipline over the last four decades to develop
methods for the estimation of state variables and parame-
ters in nonlinear dynamic systems (Dochain, 1998; Patwardhan,
Narasimhan, Jagadeesan, Gopaluni, & Shah, 2012; Rawlings &
Bakshi, 2006).

The methods for the estimation of state variables and param-
eters in stochastic nonlinear dynamic systems can be broadly
categorized into unconstrained state estimation schemes and con-
strained state estimation schemes. The most common recursive
unconstrained state estimation schemes are extended Kalman fil-
ter (EKF) (Gelb, 1974), unscented Kalman filter (UKF) (Julier &
Uhlmann, 2004), ensemble Kalman filter (EnKF) (Evenson, 2003)
and particle filter (Arulampalam, Maskell, Gordon, & Clapp, 2002).
Several variants of EKF, UKF and PF have been also proposed in the
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literature (Simon, 2006). However, the above-mentioned uncon-
strained methods do not deal with bounds and constraints imposed
on state variables and parameters in a systematic way (Abrol &
Edgar, 2011; Haseltine & Rawlings, 2005; Rao, Rawlings, & Mayne,
2003; Rawlings & Bakshi, 2006; Vachhani, Rengaswamy, Gangwal,
& Narasimhan, 2004; Vachhani, Narasimhan, & Rengaswamy,
2006).

In order to deal with constraints, which arise in most Chemical
Engineering processes, plethora of methods have been proposed,
namely, moving horizon estimation (MHE) (Rao et al., 2003), recur-
sive non-linear dynamic data reconciliation (RNDDR) (Vachhani
et al., 2004), unscented recursive nonlinear dynamic data reconcili-
ation (URNDDR) (Vachhani et al., 2006), constrained derivative-free
Kalman filters (Kandepu, Foss, & Imsland, 2008; Kolås, Foss, &
Schei, 2009; Prakash, Patwardhan, & Shah, 2010; Teixeira, Tôrres,
Aguirre, & Bernstein, 2010), constrained particle filters (Prakash,
Patwardhan, & Shah, 2011; Shao, Huang, & Lee, 2010; Stano,
Lendek, & Babuška, 2013). MHE  while being considered as a very
popular constrained state estimation technique does not follow
a predictor-corrector approach whereas, RNDDR, URNDDR, con-
strained derivative-free Kalman filters and particle filters follow a
predictor-corrector approach. For the computation of the arrival
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cost in MHE, constrained recursive state estimators have been
recently used (López-Negrete, Patwardhan, & Biegler, 2011). In all
the above methods, nonlinearity and constraints on state variables
and parameters have been handled elegantly by posing the state
and parameter estimation problem in an optimization framework
(Patwardhan et al., 2012).

Recursive nonlinear dynamic data reconciliation has been
recently developed (Vachhani et al., 2004), which combines com-
putational advantages of recursive estimation while handling
constraints on the state variables. In the correction step of RNDDR,
an optimization problem is solved to update the predicted state
estimates using measurements. The computation of one-step ahead
predicted state estimate (x̂(k|k − 1)), predicted error covariance
matrix (P(k|k − 1)) and updated error covariance matrix P(k|k) in
RNDDR formulation are identical to that of the extended Kalman fil-
ter. RNDDR also requires computing derivatives of nonlinear state
transition function and nonlinear measurement model, and is accu-
rate to the first order. Hence, RNDDR can be viewed as one form of
a constrained extended Kalman filter. Vachhani et al. (2006) later
proposed unscented recursive nonlinear dynamic data reconcilia-
tion (URNDDR) to estimate the state variables and parameters of the
nonlinear system by combining the advantages of the unscented
Kalman filter (UKF) and RNDDR. Modified versions of RNDDR and
URNDDR have been recently proposed (Kadu, Bhushan, Gudi, & Roy,
2010; Rengaswamy, Narasimhan, & Kuppuraj, 2011).

It should be noted that the extended Kalman filter still remains
as the most preferred state estimator for solving constrained
state estimation problems in the field of chemical engineering
(Dewasme, Goffaux, Hantson, & Vande Wouwer, 2013; Khodadadi
& Jazayeri-Rad, 2011). In the EKF, to the best of our knowl-
edge, the bounds have been handled either by clipping only the
state estimate or by solving the on-line optimization problem as
suggested in RNDDR. In both the approaches, the bounds and con-
straints have not been accounted while computing the covariance
matrices of the errors in the predicted (P(k|k − 1)) and updated
state estimates (P(k|k), innovation covariance matrix (V(k)),
Kalman gain (K(k)) and one-step ahead predicted state estimate
(x̂(k|k − 1)).

It should be noted that the accuracy of the first two moments
of the initial state distribution p[x(0)] and prior distribution
p[x(k)|Yk−1], namely the means and covariance matrices, play a sig-
nificant part in the extended Kalman filter performance (Schneider
& Georgakis, 2013). We  propose two novel schemes to approx-
imate the prior and posterior distributions to be a truncated
multivariate normal distribution (Robert, 1995; Kotecha & Djuric,
1999; Wilhelm & Manjunath, 2010) through (i) generation of
samples {x̂i

c(k|k − 1)}  from the truncated multivariate normal dis-
tribution NT [x̂(k|k − 1),  P(k|k − 1),  xL, xH], computation of first two
moments of the truncated prior distribution such as x̂c(k|k − 1),
Pc(k|k − 1), respectively, from the randomly drawn samples and use
them to compute the innovation and Kalman gain (ii) generation
of samples {x̂i

c(k|k − 1)} from the multivariate normal distribu-
tion N[x̂(k|k − 1),  P(k|k − 1)],  while those samples lying outside the
bounds are clipped; then the first two moments of the truncated
prior distribution are computed and being used in the compu-
tation of the innovation and Kalman gain. In addition, the first
two moments of the initial state distribution p[x(0)]∼N[x̂(0), P(0)]
and posterior distribution are also modified in order to satisfy the
bound imposed on the state variables. The efficacy of the proposed
approaches is demonstrated using following benchmark problems
in the literature:

• gas-phase reactor (Rawlings & Bakshi, 2006);
• isothermal batch reactor (Haseltine & Rawlings, 2005).

The organization of the paper is as follows. Section 2 dis-
cusses the recursive Bayesian state estimation and presents the
unconstrained EKF formulation. The proposed constrained state
estimation schemes based on EKF are presented in Section 3. The
simulation results are presented in Section 4 followed by main con-
clusions drawn through the analysis of these results as discussed
in Section 5.

2. Extended Kalman filter

Consider a nonlinear system represented by the following dis-
crete nonlinear state space equations:

x(k) =
[

x(k − 1) +
∫ k

k−1

F[x(�), u(k − 1)] d�

]
+ w(k) (1)

and

y(k) = H[x(k)] + v(k) (2)

xL ≤ x(k) ≤ xH (3)

In the above equations, x(k) is the system state vector (x ∈ Rn), u(k) is
known input (u ∈ Rm), w(k) is the process noise (w∈Rn) with known
distribution, y(k) is the measured variable (y ∈ Rr) and V(k) is the
measurement noise (v(k) ∈ Rr) with known distribution. The index
‘k’ represents the sampling instant and the symbols F and H are
namely the state transition function and measurement function,
respectively, and is assumed to be known in this work. It is further
assumed that the initial state of the system x(0) is a random vec-
tor with known probability distribution. It may be noted that the
process noise and measurement noise have been assumed to influ-
ence the system dynamics and measurement map  in an additive
manner.

The objective of the recursive Bayesian state estimation problem
is to find the mean and variance of a random variable x(k) using the
conditional probability density function p[x(k)|Y(k)]. Y(k) denotes
the set of all the available measurements, i.e. Y(k) � {y(k), y(k −
1),  . . .}.  The posterior density p[x(k)|Yk] is estimated in two steps
namely the prediction step and the update step. In the prediction
step, the posterior density p[x(k − 1)|Yk−1] at the previous time step
is propagated into the next time step through the transition density
{p[x(k)|x(k − 1)]}  as follows:

p[x(k)|Yk−1] =
∫

p[x(k)|x(k − 1)]p[x(k − 1)|Yk−1] dx(k − 1) (3)

The update stage involves the application of Bayes’ rule:

p[x(k)|Yk] = p[y(k)|x(k)]

p[y(k)|Yk−1]
× p[x(k)|Yk−1] (4)

It should be noted that the properties of the state transition
equation (1) are accounted through the transition density function
p[x(k)|x(k − 1)] while p[y(k)|x(k)] accounts for the nonlinear mea-
surement model. The prediction and update strategies provide an
optimal solution to the state estimation problem and the analyti-
cal solution to the recursive propagation of the posterior density is
difficult to obtain. However, when the process model is linear and
process and measurement noise sequences are zero mean Gauss-
ian white noise sequences, and in the absence of state constraints,
the Kalman filter describe the optimal recursive solution to the
sequential state estimation problem (Soderstorm, 2002).

The extended Kalman filter (EKF) is probably the most widely
used nonlinear filter. We  have assumed in this work that the initial
state and the sequence {w(k)} and {v(k)} are white, Gaussian, and
independent of each other.

E[w(k)] = 0 (5)
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