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a  b  s  t  r  a  c  t

We  describe  a  hybrid  bi-level  decomposition  scheme  that  addresses  the challenge  of  solving  a  large-scale
two-stage  stochastic  programming  problem  with mixed-integer  recourse,  which  results  from  a  multi-
scale  capacity  planning  problem  as  described  in Part  I of  this  paper  series.  The  decomposition  scheme
combines  bi-level  decomposition  with  Benders  decomposition,  and  relies  on  additional  strengthening
cuts  from  a Lagrangean-type  relaxation  and  subset-type  cuts from  structure  in  the  linking  constraints
between  investment  and  operational  variables.  The  application  of the  scheme  with  a  parallel  implemen-
tation  to an  industrial  case  study  reduces  the  computational  time  by two  orders  of  magnitude  when
compared  with  the  time  required  for the  solution  of  the full-space  model.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In Part I of the paper, we described a model for the integra-
tion of operational and strategic decision-making for continuous
power-intensive processes under time-sensitive electricity prices
and product demand uncertainty. The resulting formulation is a
two-stage stochastic programming problem (Birge & Louveaux,
2011), whose deterministic equivalent is a large-scale MILP due
to the integration of different time-scales, from hourly decisions
on production levels and modes to investments decisions over a
horizon of multiple years. Therefore, the problem is hard to solve
and it already has nearly 1 million constraints, 2.4 million variables
(of which 221,780 are binary) for the case of 60 scenarios, which
result from modeling a ten year horizon with an aggregated time
representation and three scenarios per season. At the same time,
the problem has a structure that deserves special attention. Similar
to other two-stage stochastic programming problems, the problem
decomposes into individual operational subproblems once first-
stage investment decisions are fixed. However, one major challenge
is the large number of binary decision variables in the second stage
that originate from detailed scheduling problems.
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There are two  main decomposition schemes that have been
applied to two-stage stochastic programming problems, namely
Lagrangean decomposition (Caroe & Schultz, 1999; Guignard &
Kim, 1987; Guignard, 2003) and Benders decomposition also
known as L-shaped method (Benders, 1962; Geoffrion, 1972; Van
Slyke & Wets, 1969).

Lagrangean decomposition applied to stochastic programming
problems is a special form of Lagrangean relaxation, which decom-
poses the original problem into subproblems by duplicating
the first-stage investment variables and dualizing the so-called
non-anticipativity constraints that enforce the same first-stage
investment decisions across all scenarios. The multipliers of the
dualized non-anticipativity constraints (the so-called complicating
constraints) are iteratively updated with subgradient optimization
or cutting planes. Lagrangean decomposition can also be applied
for non-convex problems. However, the duality gap that arises can
only be closed by using a branch-and-bound enumeration in the
full variable space (Karuppiah & Grossmann, 2008).

Benders decomposition solves the original problem by evaluat-
ing the second-stage subproblems for different realizations of the
complicating variables. The search in the space of the complicat-
ing variables is performed with a master problem that collects dual
information from the subproblems, which describe the sensitivity
of the second-stage decisions with respect to the first-stage deci-
sions. Note that the collection of dual information relies on strong
duality and becomes difficult if the problem is non-convex in the
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second-stage variables. Recently, Li, Tomasgard, and Barton (2011)
extend the idea of Benders decomposition to non-convex prob-
lems by replacing the original non-convex problem by a convex
relaxation and applying Benders decomposition to the relaxation.
Sundaramoorthy, Li, Evans, and Barton (2012) apply Li et al.’s algo-
rithm to a two-stochastic programming problem that represents a
capacity planning problem in the pharmaceutical industry.

Another decomposition scheme, which in contrast to Benders
and Lagrangean decomposition does not rely on dual information, is
the so-called bi-level decomposition algorithm (Iyer & Grossmann,
1998). Bi-level decomposition has been used in various applica-
tions, ranging from investment planning problems for utility plants
(Iyer & Grossmann, 1998), oil fields (van den Heever & Grossmann,
1999), and supply chains (You, Grossmann, & Wassick, 2011) to
planning and scheduling problems (Erdirik-Dogan & Grossmann,
2008). The algorithm is also based on the idea that some decision
variables of the problem are complicating variables, e.g. investment
decisions in strategic planning problems or assignment variables in
planning and scheduling problems.

However, in contrast to Benders decomposition, the master
problem is an aggregated problem (AP) that corresponds to a
tailored relaxation of the original problem, typically obtained by
relaxing 0/1 variables, relaxing some constraints and/or taking lin-
ear combinations of them. The aggregated problem (AP) yields an
initial bound, normally much tighter than the one obtained from
the initial Benders master problem. AP is solved alternately with
the detailed problem (DP), in which the complicating variables are
restricted. Primal cuts are inferred from DP and added back to AP,
and the process iterates until the gap between the objective func-
tion values of the two problems is within a specified tolerance.
Recently, Calfa, Agarwal, Grossmann, and Wassick (2013) as well as
Terrazas-Moreno and Grossmann (2011) apply Lagrangean decom-
position within bi-level decomposition to the aggregated problem
(AP). While both authors can speed up the solution process signifi-
cantly, their schemes lead to duality gaps due to the application of
Lagrangean decomposition.

In this part of the paper, we focus on the development and
application of a suitable decomposition strategy for the two-stage
multi-scale stochastic programming problem that we described in
Part I of the paper. We  intend to combine the individual strengths
of the afore mentioned decomposition schemes. First, the problem
statement is reviewed in Section 2. The classical bi-level decom-
position algorithm is introduced in Section 3 and applied to our
problem. We  derive subset-type cuts for the second-stage value
function based on the solution of the detailed problem (DP). In Sec-
tion 4, we explain how a Lagrangean-type relaxation of DP can be
used to generate good initial bounds, and how Benders decompo-
sition is used to further decompose the aggregated problem (AP).
The complete enhanced hybrid bi-level decomposition algorithm
is described in Section 5. Finally, in Section 6, we discuss the paral-
lel implementation of our scheme within the GAMS grid computing
environment (Bussieck, Ferris, & Meeraus, 2009), and show compu-
tational results that demonstrate the impact of our decomposition
algorithm for the multi-scale capacity planning problem applied to
the industrial case study from Part I of this paper.

2. Problem statement

We  would like to solve a two-stage stochastic programming
problem for the multi-scale capacity planning of a continuous
power-intensive process under time-sensitive electricity prices
and product demand uncertainty. The scenarios correspond to dif-
ferent demand realizations over the time horizon and the problem
has complete recourse since variables for external product pur-
chases with associated cost terms in the objective function are

present. The problem we introduced in Part I of this paper can be
summarized in the following way:

(P) min
∑

t′∈Tinvest

cT
t′ xt′ +

∑
t∈T,s∈S

�t,sd
T
t,syt,s (1)

s.t.
∑

t′∈Tinvest

A0,t′ xt′ ≤ b0 (2)

∑
t′∈Tinvest ,t′≤t

A1,t′ xt′ + B1yt,s ≤ b1 ∀t ∈ T, s ∈ S (3)

yt,s ∈ Yt,s ∀t ∈ T, s ∈ S (4)

xt′ ∈ {0, 1}n ∀t′ ∈ Tinvest (5)

The objective function (1) minimizes the sum of capital expendi-
tures (CAPEXt′ = cT

t′ xt′ ), as defined by Eq. (23) in Part I, and operating
expenditures (OPEXt,s = dT

t,syt,s) over a set of seasons t ∈ T and sce-
narios s ∈ S with probabilities �t,s, as defined by Eq. (24) in Part I.
The first-stage variables, xt′ , are binary and involve decisions on
a set of investments (N, |N| = n) with fixed capacities, which are
allowed in certain time periods, Tinvest (in our case at the begin-
ning of each year), as described in Eq. (5). Eq. (2) specifies the
restrictions on the investment decisions xt′ , such as constraints (17)
and (20) from Part I, which allow certain investments (new major
equipment and equipment upgrades) to be executed only once
over the time horizon. Eq. (3) summarizes the linking constraints
between investment decisions xt′ and operational second-stage
decisions yt,s, which include constraints (15) and (16) for equip-
ment upgrades, constraints (18) and (19) for new equipment and
constraint (21) for new storage tanks from Part I. In Eq. (4), Yt,s sum-
marizes the operational constraints (2)–(14) from Part I for season t
and scenario s, in which the variables for modes ym

t,s and transitions
ytr

t,s are binary, and the variables for internal flowrates, inventories,
sales and external product purchases, yc

t,s, are continuous:

Yt,s = {yt,s = (ym
t,s, ytr

t,s, yc
t,s)

T
, ym

t,s ∈ {0, 1}, ytr
t,s ∈ {0, 1},

yc
t,s≥0 : Bt,syt,s ≤ bt,s} (6)

While the index for hours h is omitted in (6), we  would like
to highlight that each set of operational constraints Yt,s represents
a weekly scheduling problem with an hourly time discretization
(168 h). Note that the operational problems become independent
of each other, once the investment decisions xt′ are fixed since there
is no inventory carry-over between adjacent seasons or scenar-
ios, which we  can exploit with our decomposition strategy in the
following section.

3. Bi-level decomposition algorithm

The bi-level decomposition algorithm tackles the original prob-
lem (P) by alternately solving a relaxation and a restriction of P. The
relaxation of P, denoted as aggregated problem (AP), is built with a
subset of the original primal constraints, based on domain-specific
knowledge. The idea is that not all primal information is needed
in order to determine good values for the complicating variables
of P. Once AP is solved, the complicating variables are restricted by
either fixing all of them to their respective values obtained from AP,
or only fixing the variables that were found to be zero in AP. For the
restricted complicating variables, the detailed problem (DP), which
is a restriction of P, is solved and primal cuts that are inferred from DP
are added back to AP. The algorithm iterates until the gap between
the bounds obtained from AP and DP is within a predefined tol-
erance. The generic bi-level decomposition algorithm is shown in
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