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a  b  s  t  r  a  c  t

In this  paper,  we  present  a new  decomposition  algorithm  for  solving  large-scale  multistage  stochastic
programs  (MSSPs)  with endogenous  uncertainties.  Instead  of  dualizing  all the  initial  non-anticipativity
constraints  (NACs)  and  removing  all  the  conditional  NACs  to decompose  the problem  into  scenario
subproblems,  the  basic  idea  relies  on  keeping  a subset  of NACs  as  explicit  constraints  in  the  scenario
group  subproblems  while  dualizing  or relaxing  the  rest  of the NACs.  It is  proved  that  the  algorithm
provides  a dual  bound  that is  at least  as tight  as  the  standard  approach.  Numerical  results  for  process
network  examples  and  oilfield  development  planning  problem  are  presented  to  illustrate  that  the  pro-
posed  decomposition  approach  yields  significant  improvement  in  the  dual bound  at  the  root  node  and
reduction  in  the total  computational  expense  for closing  the  gap.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic programming is typically used to model problems
where some of the parameters are random (e.g. uncertain reser-
voir size, product demand, yields, prices), Birge and Louveaux
(1997). In particular, it allows incorporating probability distribu-
tion of the uncertain parameters explicitly into the model and
provides an opportunity to take corrective actions in the future
(recourse) based on the actual outcomes (see Ahmed & Garcia,
2003; Ahmed, Tawarmalani, & Sahinidis, 2004; Clay & Grossmann,
1997; Ierapetritou & Pistikopoulos, 1994; Iyer & Grossmann, 1998;
Li & Ierapetritou, 2012; Sahinidis, 2004; Schultz, 2003). Discrete
probability distributions of the uncertain parameters that give rise
to scenarios are widely considered to represent scenarios that are
given by combinations of the realization of the uncertain param-
eters. Depending on the number of decision stages involved in
the model, the stochastic program corresponds to either a two-
stage or a multistage problem. The main idea behind two-stage
stochastic programming is that we make some decisions (stage
1) here and now based on not knowing the future outcomes of
the uncertain parameters, while the rest of the decisions are stage
−2 (recourse actions) decisions that are made after uncertainty
in those parameters is revealed. In this paper, we focus on more
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general multistage stochastic programming (MSSP) models where
the uncertain parameters are revealed sequentially, i.e. in multiple
stages (time periods), and the decision-maker can take corrective
actions over a sequence of the stages. In the two-stage and mul-
tistage case the cost of the decisions and the expected cost of the
recourse actions are optimized.

Based on the type of uncertain parameters involved in the prob-
lem, stochastic programming models can be classified into two
broad categories (Jonsbraten, 1998): exogenous uncertainty where
stochastic processes are independent of decisions that are taken
(e.g. demands, prices), and endogenous uncertainty where stochas-
tic processes are affected by these decisions (e.g. reservoir size and
its quality). Our decisions can affect the stochastic processes in two
different ways (Goel & Grossmann, 2006): either they can alter
the probability distributions (type 1) (see Held & Woodruff, 2005;
Viswanath, Peeta, & Salman, 2004), or they can determine the tim-
ing when uncertainties in the parameters are resolved (type 2) (see
Goel, Grossmann, El-Bakry, & Mulkay, 2006; Gupta & Grossmann,
2011). A number of planning problems involving very large invest-
ments at an early stage of the project have endogenous (technical)
uncertainty (type 2) that dominates the exogenous (market) uncer-
tainty. In such cases, it is essential to incorporate endogenous
uncertain parameters while making the investment decisions since
it can have a large impact on the overall project profitability. Sur-
prisingly, these problems have received relatively little attention
in the literature despite their practical importance.

In this paper, we focus on type 2 of endogenous uncertainty
where the decisions are used to gain more information, and resolve
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uncertainty either immediately or in a gradual manner. There-
fore, the resulting scenario tree is decision-dependent that requires
modeling a superstructure of all possible scenario trees that can
occur based on the timing of the decisions (Gupta & Grossmann,
2011). In this context, we present a MSSP framework to model
the problems in this class in which special disjunctive constraints
with propositional logic are considered to enforce the conditional
NACs that define the decision-dependent scenario tree. Recently,
few practical applications that involve MSSP with endogenous
uncertainty have been addressed: Goel and Grossmann (2004),
and Goel et al. (2006) for gas field development planning; Tarhan,
Grossmann, and Goel (2009), and Gupta (2013) for oil/gas field
investments and operations; Tarhan and Grossmann (2008), and
Gupta and Grossmann (2011) for process networks planning; Solak
(2007) for project portfolio optimization; Boland, Dumitrescu, and
Froyland (2008) for open pit mine scheduling; and Colvin and
Maravelias (2008) for pharmaceutical testing.

In general, these MSSPs become very difficult to solve directly
as deterministic equivalent since the problem size (constraints and
variables) increases with the number of scenarios, whereas the
solution time increases exponentially. Therefore, special solution
techniques are used to solve problems in this class. Several fullspace
approaches for the medium-size problems exploiting the proper-
ties of the model and the optimal solution have been proposed. In
particular, Colvin and Maravelias (2010) developed a branch and
cut framework, while Gupta and Grossmann (2011) proposed a
NAC relaxation strategy to solve these MSSP problems under the
assumption that only few NACs be active at the optimal solution.

Lagrangean decomposition is a widely used technique to solve
large-scale problems that have decomposable structure as in
stochastic programs (Caroe & Schultz, 1999; Conejo, Castillo,
Minguez, & Garcia-Bertrand, 2006; Fisher, 1985; Guignard, 2003;
Ruszczynski, 1997). It addresses problems where a set of con-
straints links several smaller subproblems. If these constraints
are removed by dualizing them, the resulting subproblems can
be solved independently. In the case of MSSPs with endogenous
uncertainty initial and conditional NACs are the linking constraints,
while each subproblem corresponds to the problem for a given sce-
nario. Therefore, the model has a decomposable structure that is
amenable to Lagrangean decomposition approaches. In this con-
text, a Lagrangean decomposition algorithm based on dualizing all
the initial NACs and relaxing all the conditional NACs that allow
parallel solution of the scenario subproblems has been proposed
by Gupta and Grossmann (2011). An extended form of this decom-
position approach relying on the duality based branch and bound
search is also presented in Goel and Grossmann (2006), Tarhan
et al. (2009), and Tarhan, Grossmann, and Goel (2011) to close the
gap between the UBs and LBs. Solak (2007) used a sample average
approximation method for solving the problem in this class, where
the sample problems were solved through Lagrangean relaxation
and heuristics. However, there are several limitations with these
methods including a weak dual bound at the root node, a large
number of iterations to converge at each node, and many nodes that
may  be required during the branch and bound search to close the
gap depending on the branching rules and variables. Moreover, the
number of subproblems to be solved during each iteration at every
node grows linearly with the number of scenarios. In this work, we
propose a new decomposition scheme for solving these MSSPs that
overcomes some of the limitations of the standard approaches.

The outline of this paper is as follows. First, we  introduce the
problem statement with particular focus on the problems where
timing of uncertainty realization depends on the optimization deci-
sions. Then, a generic mixed-integer linear multistage stochastic
disjunctive programming model for endogenous uncertainty prob-
lems is presented. Several Lagrangean decomposition approaches
that have been used and their limitations are identified next. To

overcome these limitations, we  propose a new Lagrangean decom-
position scheme that relies on the concept of scenario group
partitions. Numerical results of process networks and oilfield plan-
ning problems with modest number of scenarios are presented for
the various decomposition approaches.

2. Problem statement

We focus here on multiperiod planning problems that have
endogenous uncertainty in some of the parameters, i.e. where
timing of uncertainty realization depends on our decisions. In par-
ticular, the time horizon is represented by the discrete set of time
periods T = {1, 2, . . .}. The set of endogenous uncertain parameters
� = {�1, �2, . . .}  is considered where each parameter has a discrete
set of possible realizations. Therefore, a scenario s represents the
possible combination of the realizations of these uncertain param-
eters with a probability ps. Note that when some of the parameters
�p are correlated as they may  belong to a particular uncertainty
source, then the resulting scenario set will be smaller. The timing of
uncertainty resolution in each uncertain parameter depends on the
decisions xs

t (both discrete and continuous) that have been imple-
mented so far. Furthermore, the uncertainty resolution rule can be
immediate (Goel & Grossmann, 2006; Gupta & Grossmann, 2011)
or gradual (Tarhan et al., 2009) depending on the problem at hand.
Therefore, the resulting scenario tree is decision-dependent, and
hence we  need to use a superstructure of all possible scenario-trees
that can occur based on the decisions. In particular, we use logic
propositions and disjunctions as in Goel and Grossmann (2006)
and Gupta and Grossmann (2011) to represent the scenario-tree
for the problems in this class. The uncertainty realizations for each
parameter �p are assumed to be time invariant. In the next section,
we present a MSSP model corresponding to this description.

3. Model

A mixed-integer linear disjunctive MSSP with endogenous
uncertainties can be represented in the following compact form:

(MD)
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The objective function (1) in the above model (MD) minimizes
the expectation of an economic criterion over the set of scenarios
s ∈ S, and over a set of time periods t ∈ T . For a particular scenario
s, inequality (2) represents constraints that govern decisions xs

t in
time period t and link decisions across time periods. The NACs for
initial time periods TI ⊂ T are given by equations (3) for each sce-
nario pair (s, s′) to ensure the same decisions in all the scenarios.
The conditional NACs are written for the later time periods TC ⊂ T
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