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a  b  s  t  r  a  c  t

Discontinuities  between  distinct  regions,  described  by  different  equation  sets,  cause  difficulties  for
PDE/ODE  solvers.  We  present  a new  algorithm  that eliminates  integrator  discontinuities  through  regular-
izing  discontinuities.  First,  the  algorithm  determines  the  optimum  switch  point  between  two  functions
spanning  adjacent  or overlapping  domains.  The  optimum  switch  point  is determined  by searching  for a
“jump  point”  that  minimizes  a discontinuity  between  adjacent/overlapping  functions.  Then,  discontinuity
is  resolved  using  an interpolating  polynomial  that  joins  the two  discontinuous  functions.

This  approach  eliminates  the  need  for  conventional  integrators  to either  discretize  and  then  link  dis-
continuities  through  generating  interpolating  polynomials  based  on  state  variables  or  to  reinitialize
state  variables  when  discontinuities  are detected  in an  ODE/DAE  system.  In  contrast  to conventional
approaches  that  handle  discontinuities  at the  state  variable  level  only,  the  new  approach  tackles  discon-
tinuity  at  both  state  variable  and the  constitutive  equations  level.  Thus,  this  approach  eliminates  errors
associated  with interpolating  polynomials  generated  at a state  variable  level  for discontinuities  occurring
in  the  constitutive  equations.

Computer  memory  space  requirements  for this  approach  exponentially  increase  with  the  dimension  of
the  discontinuous  function  hence  there  will  be  limitations  for functions  with  relatively  high dimensions.
Memory  availability  continues  to increase  with  price  decreasing  so this  is  not  expected  to  be a major
limitation.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A process can be thought of as a complex system that is
described by, mostly, continuous mathematical functions (alge-
braic or differential). Solution of these differential equations,
usually through integration, brings an insight into the behaviour of
the process under study. However, the continuity of these math-
ematical functions is sometimes broken by internal or external
influences. Breakage of continuity occurs because of the tendency
of scientists to treat each process condition with differing constitu-
tive equations and/or boundary conditions. Once simulation shifts
from one condition to another, the underlying equations change,
usually with no reservation to mathematical continuity. A rapid
phase shift or flow reversal represents an example of an internally
generated discontinuity in ODE/DEA system whereas switching a
pump on/off can be considered as an external influence that raises
a mathematical discontinuity in the modelled system.
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Handling discontinuity through ODE/DAE solvers is performed
through two steps: discontinuity detection and discontinuity res-
olution; although some solvers combine the two  steps (Mao  &
Petzold, 2002).

The literature refers to the problem of locating a discontinuity
as discontinuity detection (Javey, 1988). Process simulators usually
couple their integrators with the modelling language. This coupling
eases detection of jump discontinuities.

Regardless of the form or source of discontinuity, it needs to be
resolved either before starting to integrate the ODE/DAE system
(if possible) or whenever it is encountered during the evolution of
integration process. Methods for the resolution of discontinuities
arising during integration of differential equations can be divided
into two types:

1. Type I tries to handle discontinuities using methods that are
usually integrated with the solver (integrator) of the ODE/DAE
system. Those methods are usually generic, irrespective of the
system to be modelled and handle discontinuities at the time
they are encountered during integration (or simulation). Most
literature on discontinuity detection and resolution covers this
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Nomenclature

ap specific area of the pellet
CT dimensionless total concentration
Cref

t total molar concentration
Dz axial thermal conductivity
kgl overall mass transfer coefficient
L column length

Nm
g number of fluid film mass-transfer units = 1−ε

ε
apkglL
uref

Pem mass Peclet number =
uref L

Dz
�s solid density
qref

i
maximum adsorbence of adsorbate i in adsorbent
pellet

Qi dimensionless adsorbence of adsorbate i in adsor-
bent pellet

uref reference velocity
U dimensionless velocity
�vi vector dimension at time instant i of simulation run
x dimensionless axial distance or x-dimension
y dimensionless concentration (mole fraction) or y-

dimension
<y> adsorbate dimensionless concentration (mole frac-

tion) in solid phase

Greek Letters
�  void fraction

�mi
mass capacity factor = 1−ε

ε

�sqref
i

Cref
t

� dimensionless time

Sub/superscripts:
f feed
p purge
i component index or simulation time instant
m mass
s solid

class (eg. Ellison, 1981; Javey, 1988; Mao  & Petzold, 2002; Park
& Barton, 1996).

2. Type II handles discontinuities using knowledge about the pro-
cess to be modelled. It remodels the ODE/DAE system in a way
that eliminates discontinuities. Literature is very sparse in this
area (e.g. Borst, 2008; Brackbill, Kothe, & Zemach, 1992; Carver,
1978; Helenbrook, Martnelli, & Law, 1999).

Borst (2008) refers to the two types as discretization and reg-
ularization, respectively (Fig. 1). He also points out that internal
model discontinuities are better handled using type II methods

Fig. 1. Transformation of a discontinuity into a regularization or a discretization
problem. (Borst, 2008).

irrespective of the solver integration routine. Surprisingly, both
classes use some form of an interpolation to convert a discontin-
uous region into a continuous one when dealing with internally
generated discontinuities. Externally generated discontinuities are
usually handled by re-initialization of the model equations and
their respective new initial and boundary conditions. In the forego-
ing discussion, we will briefly touch on recent literature covering
each of the categories.

1.1. Type I—Integrator based discontinuity resolution

Cellier (1979) demonstrated that the most efficient approach to
locating a state event is through discontinuity locking.  In disconti-
nuity locking the system of ODE/DAE is locked until the end of the
integration step regardless of the existence of a state event during
the step. After completion of the integration step that involves a
state event, the exact location of the state event is detected. Several
event location algorithms that use discontinuity locking mecha-
nism are reported and for a comprehensive review of state event
detection algorithms the reader may  refer to Park and Barton (Park
& Barton, 1996). Mao  and Petzold (2002) have introduced an event
detection algorithm that is based on regulating the integration step
size based on discontinuity functions that are appended to the DAE
system. Recently, Archibald, Gelb, and Yoon (2008) introduced a
state event detection algorithm that is based on polynomial anni-
hilation techniques. Their method relies on the difference of the
Taylor series expansions behaviour between continuous and non-
continuous intervals of the tested function.

Once a discontinuity is detected, it needs to be resolved before
the integrator passes it. Javey (1988) reports three methods for
resolving discontinuities. In all methods, the integrator checks the
sign change of a discontinuity-function after each integration step
as indication of having located a discontinuity:

1. Once the discontinuity is located, the integrator switches mod-
elling equations to those after the discontinuity and starts at the
end of the current step. This procedure is inaccurate as it accu-
mulates error each time a discontinuity is encountered. Mao  and
Petzold (2002) warn about mere stepping over discontinuities
without carefully handling them with some rigour.

2. Once the discontinuity is located, the integrator halves the step
and repeats the last integration step in a hope to resolve the
discontinuity. Resolution is generally achieved if the function is
continuous but the integrator may  fail to resolve the disconti-
nuity due to the use of a large integration step. Thus, repeating
the integration step with smaller step sizes, where the disconti-
nuity is detected should eventually reveal the continuity of the
function. This solution, although better than the first one, is still
considered inefficient because the integrator needs to iterate at
the discontinuity until an acceptable error tolerance is achieved.
If the acceptable error tolerance is not achieved after repeated
step-halving (usually because of an instantaneous discontinu-
ity), the integrator aborts integration. The method is then unable
to resolve the discontinuity (Carver, 1978).

3. Once the discontinuity is located, the integrator reinitializes
the differentiable variables using post discontinuity condi-
tions after interpolating differential and algebraic variable at
the discontinuity using a discontinuity function (an interpolat-
ing polynomial). It should be noted that this method implies
mathematical continuity of differential equations through the
discontinuity domain regardless of the validity of the result-
ing solution, as demonstrated by Cellier (1979). This method
is the most commonly adopted in recent integration routines
used for process simulation. The mismatch between the results
obtained using the interpolating polynomial and those obtained
when reinitializing the ODE/DAE system after crossing a
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