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a  b  s  t  r  a  c  t

The  development  of detailed  chemical  kinetic  models  is  necessary  for  the design and  optimization  of
complex  chemical  systems.  However,  it is also  often  desired  to  reduce  the  model  size by  excluding  incon-
sequential  chemical  species  and/or  reactions  for  end-point  applications,  usually  due  to computational
reasons.  In  this  work,  new  model  reduction  methods  based  on  dynamic  sensitivities  from  the impulse
parametric  sensitivity  analysis  (iPSA)  and  the  Green’s  function  matrix  (GFM)  analysis  have been  devel-
oped.  The  iPSA  and  GFM  were  originally  formulated  to provide  dynamical  parameter-by-parameter  and
species-by-species  information  on how  a  system  output  behavior  is  achieved,  respectively.  The effica-
cies  of  the  proposed  reduction  methods  were  compared  with  existing  methods  through  applications  to
reduce  detailed  kinetic  models  of alkane  pyrolysis  and  natural  gas  combustion  (GRI  Mech  3.0)  and  an  ab
initio kinetic  model  of  industrial  steam  cracking  of  ethane.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many contemporary world problems, such as global climate
change and energy issues, are in one way or another related
to complex chemical processes. Examples of these processes
range from atmospheric reactions to combustion and hydrocarbon
processing. The understanding of these processes often necessi-
tates the creation and use of detailed kinetic models that describe
the intermediates and reactions in the system. The most impor-
tant intermediates and reactions are not usually known a priori
and can change depending on reaction conditions. The mechanis-
tic knowledge that can be gained from the analysis of such models
is important for the control, design or manipulation of these sys-
tems. Nevertheless, a simpler model, one that is valid under certain
conditions, is often desired for computational reasons (e.g., for
model-based optimization and control applications).

One of the most common formalisms used to describe chem-
ically reacting systems is ordinary differential equations (ODEs).
A variety of methods exist that can provide reduced order models
from the full ODEs. The general aim of these methods is to obtain
the simplest model with the fewest species and/or reactions, while
still retaining the essential features of the detailed model (Petzold
& Zhu, 1999). For example, reduced-order linear ODE models
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could be obtained using methods from linear systems theory, such
as balanced truncation or generalized Grammians (Dullerud &
Paganini, 2000). However, the applications of linear system meth-
ods to complex chemical processes have been limited as chemical
kinetic models typically involve nonlinear rate equations.

Reductions of nonlinear ODE models are conventionally done
by removing redundant or unimportant species and reactions, or
by condensing a few species into one. Species reduction meth-
ods can be classified into three groups: (i) time scale analysis
methods, (ii) lumping methods and (iii) compound contribution
methods (Xia, Michelangeli, & Makar, 2009). Time scale analysis
methods generate reduced order models by removing short life-
span species with the assumption that fast reversible reactions are
in equilibrium (Turányi, Tomlin, & Pilling, 1993). However, such
reduction techniques often require inputs from an experienced
and knowledgeable user. Other less commonly used methods in
this classification include methods using computational singular
perturbation (CSP) (Lam & Goussis, 1994) and intrinsic low dimen-
sional manifolds (ILDM) (Maas & Pope, 1992). On the other hand,
lumping methods, as the name suggests, reduce model dimen-
sionality by coalescing species, which include methods such as
substrate lumping (Weekman, 1979), exact lumping (Li & Rabitz,
1989), approximate lumping (Li & Rabitz, 1990), and chemical
lumping (Fournet et al., 2000). Finally, compound contribution
methods rely on quantifying and ranking the contribution of
species toward those of interest, the result of which is then used to
remove unimportant species. Examples from this category include
graph based methods such as directed relation graph without error
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Nomenclature

n number of states
p number of parameters
z independent variable (e.g., time or spatial position)
x n dimensional state vector
p p dimensional kinetic parameter vector
f n dimensional function giving the net rate of change

in the states
t time or observation time
� perturbation time
Si,j parametric sensitivity of the species xi with respect

to the parameter pj
Sx

i,j GFM sensitivity of the species xi with respect to the
species xj

iSi,j iPSA sensitivity of the species xi with respect to the
parameter pj

|| · ||∞ infinite norm
gj iPSA-based sensitivity rank of the parameter pj
hi GFM-based sensitivity rank of state i
Ij the set of species associated with the parameter pj

propagation (DRG) (Lu & Law, 2005) or with error propagation
(DRGEP) (Pepiot-Desjardins & Pitsch, 2008) or using sensitivity
analysis (Niemeyer, Sung, & Raju, 2010), and path flux analysis
(PFA) (Wenting, Zheng, Xiaolong, & Yiguang, 2010).

Model reduction by removing reactions is based on the (esti-
mated) impact of the removal on the quality of model prediction.
Different methods belong to this category, and each method uses
a different metric to quantify this impact. One of the most com-
mon  method in this category relies on the parametric sensitivity
coefficients to rank the importance of reactions (Turányi, 2008;
Turányi, Bérces, & Vajda, 1989), as these coefficients reflect the
ratio of changes in the system outputs with respect to perturba-
tions in kinetic parameters or initial species concentrations (Varma,
Morbidelli, & Wu,  1999). In this case, model reduction is performed
by eliminating reactions whose rate constants have small sensitiv-
ity magnitudes. While this category of methods could potentially
be automated, its good performance often requires knowledge-
able user guidance as to which reactions to remove (Turányi,
1990a).

Other reduction methods are based on linear or non-linear
programming. In this case, the model reduction is written as a con-
strained optimization problem, for example as an integer linear
programming (ILP) (Bhattacharjee, Schwer, Barton, & Green, 2003;
Mitsos, Oxberry, Barton, & Green, 2008) or nonlinear programming
(NLP) (Androulakis, 2000; Edwards, Edgar, & Manousiouthakis,
2000; Petzold & Zhu, 1999). Here, the elimination of species and/or
reactions is done to produce the simplest model with an acceptable
model reduction error. The methods mentioned above have their
own advantages and disadvantages, but a detailed comparison of
these methods is out of the scope of the present study.

In this article, five new sensitivity-based model reduction meth-
ods are proposed. The crucial difference between these and existing
sensitivity based methods is the use of time-dependent pertur-
bations in the sensitivity analysis, i.e. the impulse parametric
sensitivity analysis (iPSA) (Perumal & Gunawan, 2011) and the
Green’s function matrix (GFM) analysis (Perumal, Wu,  & Gunawan,
2009; Yetter, Dryer, & Rabitz, 1985). Elsewhere, we have shown
that the dynamical importance of reactions cannot be inferred
from the traditional parametric sensitivity coefficients (Perumal
et al., 2009), but is immediately apparent from the iPSA and GFM
analysis. In particular, the iPSA and GFM can provide dynami-
cal, parameter-by-parameter and species-by-species information

on how a system output behavior is achieved, respectively. The
efficacy of the proposed methods is compared to existing meth-
ods through applications to the kinetic models of alkane pyrolysis
(Edelson & Allara, 1980), and natural gas combustion (GRI Mech
3.0) (Gregory et al., 1999), and an ab initio mechanistic model for
industrial steam cracking of ethane (Sun & Saeys, 2011).

2. Methods

Detailed kinetic models of chemically reacting systems are often
formulated as ordinary differential equations (ODEs). Such ODE
models are built, for example by assuming spatially homogeneous
concentrations of species (i.e., well mixed system) or steady state
operation of spatially inhomogeneous systems (e.g., plug flow reac-
tor (PFR) model). The systems dynamics can generally be written
as:

∂x(z, p)
∂z

= f (z, x(z, p), p) x(z0, p) = x0(p) (1)

Here, the vectors x(z, p) ∈ Rn, x0(p) ∈ Rn, and p ∈ Rp denote the
system states, such as chemical species concentration and tem-
perature, their initial or boundary conditions, and the model
parameters, respectively. The independent variable z ∈ R1 typi-
cally denotes time or spatial position. The function f (z, x(z, p),
p) : R1 × Rn × Rp → Rn describes the net rate of formation or disap-
pearance of chemical species, or the conversion from chemical to
thermal energy. The solution to the ODE model in (1) gives the
trajectory of the states x(z, p) in the system.

2.1. Model reduction using parametric sensitivity analysis

Parametric sensitivity analysis (PSA) of ODE  models is well
established in the field of science and engineering (Turányi, 1990b;
Varma et al., 1999). This analysis reveals the effect and importance
of parameter values on the system states and outputs. There are
two versions of the PSA: local and global. In the global PSA, one
studies the change in model behavior over a range of parameter
values. Here, the system sensitivities with respect to parameters
are typically quantified with the help of statistical tools (Marino,
Hogue, Ray, & Kirschner, 2008; Saltelli, 2008). The local PSA can be
viewed as a special case of the global PSA, in which the parameter
range is reduced to an infinitesimal region around the nominal val-
ues (Ingalls, 2008; Saltelli, Tarantola, Campolongo, & Ratto, 2004).
In comparison to the global PSA, the formulation of local parametric
sensitivities is simpler, which can be done by directly differentiat-
ing the ODE model in (1) as follows:

∂

∂z

∂x(z, p)
∂p

= ∂f (z, x(z, p), p)
∂x

∂x(z, p)
∂p

+ ∂f (z, x(z, p), p)
∂p

∂x(z0, p)
∂p

= ∂x0(p)
∂p

(2)

where ∂ f/∂x is known as the Jacobian matrix. The parametric sen-
sitivities in (2) are solved simultaneously with the ODE model in (1)
using the direct differential method or separately using the Green’s
function method (Varma et al., 1999). The coefficients are usually
compared using their normalized values:

Si,j(z, p) = ∂xi(z, p)
∂pj

pj

xi(z)
= ∂ log xi(z, p)

∂ log pj
(3)

The sensitivity coefficient in (3) can be thought as the percent
change in the state trajectory xi at z with respect to a percent per-
turbation on the system parameter pj. The sensitivity coefficients
in the local PSA are usually calculated for perturbations introduced
at z0 (see Fig. 1(a) and (b)), but more general perturbations at
different z’s can also be done (Turányi, 1990b). In the following,
the independent variable z is taken to be the time variable t with
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