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a  b  s  t  r  a  c  t

A  fast  and  accurate  solver  for the  general  rate model  is  extended  for computing  sensitivities  that  describe
the  impact  of  small  parameter  changes  on  the  simulated  chromatograms.  Parameter  sensitivities  are
required  by  many  optimization  algorithms  and  are  useful  for  understanding  how  chromatograms  depend
on specific  system  properties  or operating  conditions.  They  are  efficiently  computed  with  arbitrary  pre-
cision by  integrating  a forward  sensitivity  DAE  system  that is derived  from  the  original  DAE  system.  The
involved  partial  derivatives  are  either  manually  derived  or  computed  by algorithmic  differentiation.  This
approach  is  demonstrated  to be more  robust  and faster  for  realistically  sized  problems,  as  compared  to  the
traditional  finite  difference  approach.  Sensitivities  are  computed  not  only  with  respect  to  intrinsic  model
parameters,  such  as diffusion  coefficients  and  isotherm  parameters,  but also  with  respect  to  parameters
in  the  boundary  concentrations,  such  as  the  slope  of  an  elution  salt  gradient.  The  extended  solver  is  part
of  the  Chromatography  Analysis  and  Design  Toolkit  (CADET).

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Column liquid chromatography is among the most widely
applied unit operations for downstream processing in biophar-
maceutical industry (Carta & Jungbauer, 2010). Typical processes
comprise several chromatography steps for concentrating, separat-
ing, and purifying product molecules from fermentation broth or
natural sources (Subramanian, 2007). Chromatography modeling
has a long tradition (Guiochon, Felinger, Shirazi, & Katti, 2006), and
the well-known general rate model (GRM) describes mass trans-
port of solute molecules at different levels of the chromatography
column (Guiochon, 2002).

Abbreviations: AD, algorithmic differentiation; ADOL-C, automatic differen-
tiation by overloading in C++; BDF, backward differentiation formula; CADET,
Chromatography Analysis and Design Toolkit; DAE, differential-algebraic equation;
FV, finite volumes; FD, finite differences; GPL, general public license; GRM, general
rate model; IDA, implicit differential-algebraic solver; IDAS, implicit differential-
algebraic solver with sensitivity capabilities; IVP, initial value problem; JUROPA,
Jülich Research on Petaflop Architectures; MCL, multi-component Langmuir; MPM,
mobile phase modifier; OpenMP, open multi-processing; PDAE, partial differential-
algebraic equation; SMA, steric mass action; SUNDIALS, suite of nonlinear and
differential/algebraic equation solvers; WENO, weighted essentially non-oscillatory.
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The GRM must be combined with suitable binding models for
simulating different chromatography modes, for instance, affinity
(Montesinos, Tejedamansir, Guzman, Ortega, & Schiesser, 2005),
ion-exchange (Forrer, Butté, & Morbidelli, 2008), hydrophobic
interaction (Xia, Nagrath, & Cramer, 2003), or mixed-mode (Nfor
et al., 2010). However, interaction mechanisms of solute molecules
and adsorber surfaces are still subject of active research, in par-
ticular, when additional parameters, such as ionic strength (Lan,
Bassi, Zhu, & Margaritis, 2001), pH (Bankston, Dattolo, & Carta,
2010), temperature (Muca, Piatkowski, & Antos, 2009) and mobile
phase modifiers (Degerman, Jakobsson, & Nilsson, 2007) are con-
sidered. Quantitative reproduction and prediction of industrially
relevant separation processes also requires to account for several
components or pseudo-components (Degerman et al., 2007).

Model simplifications, such as neglecting the mass trans-
fer resistance caused by pore diffusion (Guiochon, 2002), can
help to reduce the computational complexity and the number
of model parameters. However, lumped parameters lose their
physical meaning, and oversimplified models cannot be used for
simulating scale-up and scale-down experiments when effects of
scale-dependent and scale-independent mechanisms are lumped
into the same model parameters. Consequently, modern chro-
matography models depend on increasing numbers of model
parameters.

Model parameters are commonly estimated from measure-
ment data by the so-called inverse method (Arnell, Forssén,
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& Fornstedt, 2005). Calibrated models can then be applied for
optimal experimental design (Pukelsheim, 2006) and (robust) pro-
cess optimization (Degerman, Jakobsson, & Nilsson, 2006). All of
these tasks typically require to minimize sums of squared resid-
uals, and efficient optimization algorithms, such as the popular
Levenberg–Marquardt algorithm (Levenberg, 1944; Marquardt,
1963), need derivatives of these residuals with respect to the esti-
mated parameters.

Parameter derivatives, also referred to as sensitivities, can be
computed by various methods. The finite difference approach is
easy to implement but potentially tricky to apply as the ideal
parameter perturbation is generally not known (Gill, Murray, &
Wright, 1981; Li, Petzold, & Zhu, 2000). We  have hence extended
our GRM solver (von Lieres & Andersson, 2010) to computing
parameter sensitivities by solution of forward sensitivity systems
(Rabitz, Kramer, & Dacol, 1983). This method allows to efficiently
compute parameter sensitivities with arbitrary precision by simply
specifying the corresponding time integration tolerances, provided
that the specific derivatives of the underlying partial differential-
algebraic equation (PDAE) system can be accurately evaluated.

The major effort of extending our code to parameter sensitiv-
ities was spent for implementing exact derivative computations
of the residual function F of the implicitly formulated PDAE sys-
tem with respect to the state vector, y, to the time derivative of
the state vector, ẏ, and to the parameter vector, p. The first two  of
these derivatives are identical with the original system Jacobian,
∂F/∂y, and with the so called mass matrix, ∂F/∂ẏ, for which analyt-
ical implementations are available from the existing code. Only the
parameter derivatives, ∂F/∂p, had to be newly implemented using
operator overloading-based algorithmic differentiation (AD). The
AD approach technically requires the same computational effort as
first order finite differences, but computes the required derivatives
with machine precision (Griewank & Walther, 2008).

2. GRM solver

We  briefly review the basic characteristics and features of our
forward GRM solver (von Lieres & Andersson, 2010). This code con-
stitutes the basis for all extensions and enhancements that are
presented in the forthcoming sections.

2.1. General rate model

The forward simulator solves the GRM of column liquid
chromatography as derived and comprehensively discussed in
Guiochon et al. (2006). The resulting PDAE system describes the
unsteady mass transport by convection and dispersion in the inter-
stitial column volume (Eq. (1)), and by diffusion within the porous
beads (Eq. (2)). The state variables are interstitial concentration,
ci(t, z), mobile phase concentration, cp,i(t, z, r), and stationary phase
concentration, qi(t, z, r), of component i ≤ Nc at axial coordinate
z ≤ L, radial coordinate r ≤ rp, and time t ≤ T. The model parameters
are described in Section 5 (Tables 2 and 3).
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Several models for describing adsorption and desorption of
solute molecules at the inner bead surfaces are implemented,
including the multi-component Langmuir (MCL) model (Eq. (3))
(Müller-Späth et al., 2011), the steric mass action (SMA) model (Eqs.
(4) and (5)) (Brooks & Cramer, 1992), and a mobile phase modifier

(MPM)  model (Degerman et al., 2007). The mass balance equations
(Eqs. (1) and (2)) must also be solved for the salt component (i = 0)
in the SMA  model which is not present in the Langmuir model (i = 1,
. . .,  Nc).
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The quasi-stationarity indicator a can either be set to 0 or 1 in
order to specify whether the binding models are solved as algebraic
isotherm equations or as differential kinetic equations. Only the
equilibrium constant, keq = ka/kd, is relevant for the quasi-stationary
case, a = 0, but not the absolute values of the adsorption and desorp-
tion constants. Hence, the desorption constant kd can be set to 1 and
the adsorption constant ka to keq when a = 0.

Danckwerts boundary conditions (Barber, Perkins, & Sargent,
1998) are applied at the column inlet and outlet (Eqs. (6) and (7)),
a linear film-diffusion model is used at the outer bead boundary
(Eq. (8)), and a symmetry condition is applied at the bead centers
(Eq. (9)). Initial conditions and concentration profiles at the column
inlet are described in Section 5.

Column inlet : u cin,i(t) = u ci(t, 0) − Dax
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Column outlet :
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Bead center :
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In contrast to the Langmuir model, which consists of ordinary
differential equations (Eq. (3)), the SMA  model also comprises an
algebraic equation (Eq. (5)) for the salt component (i = 0). However,
a rapid equilibrium assumption, i.e. ∂qi/∂t = 0 for i ≥ 1, is some-
times applied to reduce the number of model parameters, and this
assumption transforms all binding models to purely algebraic form.

2.2. Solution scheme

The PDAE system (Eqs. (1)–(9)) is discretized using the method
of lines, i.e. the space coordinates z and r are discretized separately
from the time coordinate t, resulting in a large system of coupled
ordinary differential-algebraic equations (DAE). This DAE system is
solved by a hierarchical scheme of nested iterations (left panel of
Fig. 1):
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