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a  b  s  t  r  a  c  t

Partially  observed  Markov  decision  processes  (POMDPs)  serve  as  powerful  tools  to  model  stochastic
systems  with  partial  state  information.  Since  the exact  solution  methods  for  POMDPs  are  limited  to
problems  with  very  small  sizes  of  state,  action  and  observation  spaces,  approximate  point-based  solution
methods  like  PERSEUS  have  gained  popularity.  In this  work,  a mixed  integer  linear  program  (MILP)  is
developed  for  calculation  of  exact  value  updates  (in  PERSEUS  and  similar  algorithms),  when  the  POMDP
has  very  large  or continuous  action space.  Since  the  solution  time  of the  MILP  is  very  sensitive  to the
size  of  the  observation  space,  the  concept  of  post-decision  belief  space  is introduced  to  generate  a  more
efficient  and  flexible  model.  An example  involving  a flow  network  is  presented  to illustrate  the  concepts
and  compare  the results  with  those  of  the  existing  techniques.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

POMDP describes a discrete-time stochastic control process
when the states of the environment are partially observed. At any
time, the system is in one of the discrete states s ∈ S where S is a
set of all permissible states and is called state space. By taking an
action a, the system transitions probabilistically to the next state
s′ ∈ S according to known probability p(s′|s,a) and accrues a reward
r(s,a). The next state s′ is not completely observed but an observa-
tion o may  be made, which is probabilistically related to the state s′

and action a by p(o|s′,a) through stochastic system dynamics. The
sets of all permissible actions and observations are called action
and observation space, respectively. The objective is to find a con-
trol policy mapping the probability distribution across the states
(called belief state) to action such that the expected value of the
total rewards accrued over a time horizon is maximized.

Many real-world decision/control problems are characterized
by probabilistic state transitions, partially observed states, and a
reward/cost functions to be maximized/minimized over a finite or
infinite time horizon. Therefore POMDPs have appeared in various
applications including machine maintenance, structural inspec-
tion, elevator control, robotics, dialog control, and even population
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control in fishery industries (Cassandra, 1998). The main obstacle to
wider use, however, has been the lack of computationally efficient
algorithms for the value update.

Exact solution for POMDP requires solving the Bellman’s opti-
mality equation (Bellman, 1957) formulated with respect to the
belief state. Since the exact solution methods for POMDPs are
limited to problems with very small sizes of state, action and
observation spaces, approximate solution methods have gained
popularity. A saving grace for POMDP is that the optimal value
function is piecewise linear and convex. Hence, the point based
methods, which consider a fixed or evolving set of prototype belief
points instead of considering the entire belief simplex, have been
popular. A particular point based method called PERSEUS (Matthijs
& Vlassis, 2005) favorably makes use of the piecewise linear and
convex (PWLC) structure of the value function to speed up conver-
gence. In this work, POMDPs with very large or continuous action
space are considered. In the current form of PERSEUS and many
other point based methods, presence of continuous actions or very
large action space makes it practically impossible to compute the
value backups exactly.

There is some literature that considers POMDPs with very large
or continuous action spaces. Among the available POMDP solution
methods, policy search methods are better equipped at handling
continuous action spaces. An example is Pegasus (Ng & Jordan,
2000), which estimates the value of a policy by simulating trajec-
tories using a fixed random seed, and adapts its policy in order to
maximize the value. Pegasus can handle continuous action spaces
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at the cost of a sample complexity that is polynomial in the size of
the state space. Baxter and Bartlett (2001) propose a policy gradi-
ent method that searches in the space of randomized policies; this
method can also handle continuous actions. The main disadvan-
tages of policy search methods are the need to choose a particular
policy class and the fact that they are prone to local optima. Thrun
(1998) and Matthijs and Vlassis (2005) consider sampling tech-
niques to keep the active size of the action space relatively small
for continuous or very large action spaces. In the Monte Carlo
POMDP (MC-POMDP) method of Thrun (1998), real-time dynamic
programming is applied on a POMDP with a continuous state and
action space. In that work, beliefs are represented by sets of samples
drawn from the state space, while the values of the Q-functions,
defined over belief state and action (Q(b,a)), are approximated
by nearest-neighbor interpolation from a (growing) set of proto-
type values and are updated by online exploration and the use of
sampling-based Bellman backups. In contrast with PERSEUS, the
MC-POMDP method does not exploit the PWLC structure of the
value function. Both methods are problem dependent and may  lead
to loss of solution quality in certain applications.

Alternatively, by the use of mathematical programming, exact
value backups may  be ensured in the presence of large or contin-
uous action and/or observation space. This paper seeks to make
two contributions: (i) First, mathematical programming models
are developed to compute exact value backups associated with
PERSEUS in presence of very large of continuous action spaces. (ii)
Alternative formulation around post decision belief state is devel-
oped to allow for more efficient and flexible computation of the
value updates in the presence of large sized observation space. The
two algorithms are illustrated by example problems and results are
compared with those from traditional techniques.

The paper is organized as follows: In Section 2, we  describe
POMDPs and the point based solution method PERSEUS which is the
underlying algorithm we are using to solve POMDPs. We  also moti-
vate the problem by using an illustrative flow network problem and
describe its formulation as POMDP. In Section 3, we  develop the
mathematical program to compute the value backups for PERSEUS.
In Section 4, we introduce the notion of post decision belief state
and reformulate value backups around it. In Section 5, we discuss
application of developed mathematical programs to two  illustra-
tive problems and show results in terms of convergence times and
solution quality.

2. POMDP description and motivating example

2.1. POMDP description

POMDP corresponds to a tuple (S, A, �,  T, OP,  R) where S
is a set of states, A is a set of actions, � is a set of observa-
tions, T: S × A × S → [0,1] is a set of transition probabilities that
describe the dynamic behavior of the modeled environment,
OP: S × A × � → [0,1] is a set of observation probabilities that
describe the relationships among observations, states and actions,
and R: S × A × S → R1 denotes a reward model that determines
the reward when action a is taken in state s leading to next
state s′. The dependence of reward function on s′ is usually sup-
pressed by taking a weighted average over all possible next states

(r(s, a) =
∑

s′
p(s′|s, a)R(s, a, s′)). Symbols s, s′, o and a are used

to denote current state, next state, observation and action and
belong to sets S, S, � and A, respectively. Since the state s at each
time is not observed directly but indirectly through o, one does
not know the current state with certainty. Hence, the information
about the state is represented by belief state b(s), which represents
the probability of being in state s at a given time. b(s) for all s ∈ S

must be defined at each time and the vector containing the entire
probability distribution over the state space is called the belief
state vector to be denoted by b hereafter. 0 ≤ � < 1 is the discount
rate that discounts the future rewards. The goal is to find a control
policy mapping the belief state vector to a that maximizes the
discounted sum of rewards over a time horizon, which can be
either finite or infinite (in our case) as shown in (1).

˘∗ = arg

(
max

at

∞∑
t=1

�t−1r(st, at)

)
(1)

Infinite horizon POMDP with discounting is used in all illus-
trations, � being the discounting factor. Equivalent models can be
derived for finite horizon POMDPs with little difficulty.

The optimal policy for the above is defined by the following so
called Bellman’s optimality equation written with respect to the
belief state vector.

V(b) = max
a ∈ A

{∑
s ∈ S

r(s, a)b(s) + �
∑
o ∈ O

p(o|b, a)V(ba,o)

}
(2)

ba,o(s′) =
∑

s ∈ Sp(s′|s, a)p(o|s′, a)b(s)∑
s′ ∈ S

∑
s ∈ Sp(s′|s, a)p(o|s′, a)b(s)

(3)

p(o|b, a) =
∑
s′ ∈ S

∑
s ∈ S

p(s′|s, a)p(o|s′, a)b(s) (4)

whereas the belief state b(s) represents the probability of being
in state s at a given time, ba,o(s′) is the belief state at the next
time period, which is reached by taking an action a and making
an observation o.

Typically, the above is solved through iteration in the following
manner:

Vn+1(b) = max
a ∈ A

{∑
s ∈ S

r(s, a)b(s) + �
∑
o ∈ O

p(o|b, a)Vn(ba,o)

}
(5)

The above equation is very difficult to handle from a numerical
standpoint as V(b) is an arbitrary function of the continuous belief
state vector b. Note that the right side involves maximization of an
expectation quantity.

2.2. Point based solution method for POMDP

A saving grace for POMDP is that the optimal value function is
known to be piecewise linear and convex. Based on this property,
point based methods like PERSEUS have become popular.

Adopting the POMDP notation from (Matthijs & Vlassis, 2005),
in the point based methods, the value function that appears in the
value backup of Eq. (5) takes the form of

Vn(ba,o) = max
i

∑
s′ ∈ S

˛i
n(s′)ba,o(s′) (6)

In the above, ˛i
n, i = 1, 2, . . . |Vn| is the set of gradient vectors

that characterizes the value function at nth iteration (denoted by
Vn). The dimensionality of the gradient vectors is |S|, the size of
the underlying state space. ˛i

n (s′) represents the scalar element
of the gradient vector ˛i

n corresponding to the state s′. Similar to
the fully observable Markov decision processes (FO-MDP or simply
MDP), for every iteration, the computation time is proportional to
|A| when enumeration of all actions is used. This is attributed to the
max  operation in (5). Additionally, the size of all possible gradient
vectors at the n + 1th iteration is |Vn||A||O|, where |Vn| is the number
of gradient vectors that characterize Vn. Therefore, POMDP with
large action and observation spaces prove to be a challenge. It is
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