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a  b  s  t  r  a  c  t

This  study  presents  the  development  and  application  of  a systematic  model-based  framework  for  bio-
process  optimization.  The  framework  relies  on the  identification  of  sources  of  uncertainties  via  global
sensitivity  analysis,  followed  by  the  quantification  of  their  impact  on  performance  evaluation  metrics  via
uncertainty  analysis.  Finally,  stochastic  programming  is  applied  to  drive  the  process  development  efforts
forward  subject  to these  uncertainties.  The  framework  is  evaluated  on  four  different  process  configu-
rations  for  cellulosic  ethanol  production  including  simultaneous  saccharification  and  co-fermentation
and  separate  hydrolysis  and  co-fermentation  (SSCF  and  SHCF,  respectively)  technologies  in  different
operation  modes  (continuous  and  continuous  with  recycle).  The  results  showed  that  parameters  related
to pretreatment  (e.g.  activation  energy  of  the reaction  for  glucose  production,  order  of  the  reaction,
etc.),  hydrolysis  (inhibition  constant  for  xylose  on conversion  of cellulose  and  cellobiose,  etc.) and
co-fermentation  (ethanol  yield  on xylose,  inhibition  constant  on microbial  growth,  etc.),  are  the  most
significant  sources  of uncertainties  affecting  the  unit  production  cost  of  ethanol  with  a standard  devia-
tion  of  up  to  0.13  USD/gal-ethanol.  Further  stochastic  optimization  demonstrated  the  options  for  further
reduction  of the  production  costs  with  different  processing  configurations,  reaching  a  reduction  of  up
to  28%  in the production  cost  in  the  SHCF  configuration  compared  to  the  base  case  operation.  Further,
the  framework  evaluated  here  for uncertainties  in the  technical  domain,  can also  be  used  to  evaluate  the
impact of  market  uncertainties  (feedstock  prices,  selling  price  of  ethanol,  etc.)  and  political  uncertainties
(such  as  subsidies)  on  the economic  feasibility  of  lignocellulosic  ethanol  production.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Process optimization is an important area within process sys-
tems engineering (PSE), actively used in the development, decision
making, and subsequent improvement of chemical processes (e.g.
for the design, synthesis and operation), aiming at maximizing
the process performance while at the same time minimizing
the processing costs (Grossmann & Guillén-Gonsálbez, 2010).
Many mathematical programming techniques are applied in pro-
cess optimization, such as nonlinear programming, mixed-integer
non-linear programming, multi-objective optimization, quadratic
programming, among others (Shapiro, Dentcheva, & Ruszczyński,
2009).

In reality the above-mentioned programming techniques can
be further complicated by several sources of uncertainties that
can be encountered in practice when solving optimization

∗ Corresponding author.
E-mail address: gsi@kt.dtu.dk (G. Sin).

problems, where the variability of uncertain parameters is com-
monly neglected (Acevedo & Pistikopoulos, 1996; Grossmann &
Guillén-Gonsálbez, 2010). The process optimization is a partic-
ularly challenging task in (bio)process development, notably in
processes such as cellulosic bioethanol production because sev-
eral processing configuration options are available and the plant
operation is characterized by tight cost and yield margins. In
addition, the uncertainties present in the system as a result of
technological factors and, economical factors as well as the uncer-
tainty in the mathematical model and parameters employed to
perform the optimization task pose severe challenges. A number of
publications concerning optimization under uncertainty are avail-
able, covering a range of topics, such as process synthesis, design
and control under uncertainty (Acevedo & Pistikopoulos, 1996;
Pintarič & Kravanja, 2008; Ricardez-Sandoval, Douglas, & Budman,
2011), planning under uncertainty (Hansen, Grunow, & Gani, 2011),
uncertainty on scheduling (Wang & Rong, 2010), strategic and
global supply chain networks (Verderame & Floudas, 2011; You &
Grossmann, 2008), etc. Most of those publications, when address-
ing the uncertainty of the optimization problem, have focused on
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Nomenclature

APT
1,Xy pre-exponential factor for xylose production, h−1

APT
2,Xy pre-exponential factor for xylose degradation, h−1

APT
1,A pre-exponential factor for arabinose production,

h−1

APT
2,A pre-exponential factor for arabinose degradation,

h−1

APT
1,G pre-exponential factor for glucose production, h−1

APT
2,G pre-exponential factor for glucose degradation, h−1

APT
1,F pre-exponential factor for furfural production, h−1

APT
2,F pre-exponential factor for furfural degradation, h−1

APT
1,ASL pre-exponential factor for reaction to produce ASL,

h−1

APT
2,ASL pre-exponential factor for reaction to consume ASL,

h−1

APT
3,ASL pre-exponential factor for reversible reaction to

produce ASL, h−1

bi regression coefficients in the fitted linear multivari-
ate model

CAcid acid concentration, %(wt/v)
CAn arabinan concentration, g/kg
CAsh ash concentration, g/kg
CASL acid-soluble lignin concentration, g/kg
CLn lignin concentration, g/kg
CXn xylan concentration, g/kg
CGn glucan (cellulose) concentration, g/kg
CI confidence interval
COC other compounds concentration, g/kg
cT constant vector of economic information, USD/kg
cT x deterministic term of the stochastic optimization

cost function, USD/gal-ethanol
Cyeast yeast concentration, g/kg
SHCF with double recycle separate hydrolysis and co-

fermentation working in continuous and recycle for
both unit operations

SHCF with single recycle separate hydrolysis and co-
fermentation working in continuous and recycle for
in the enzymatic hydrolysis and continuous regime
in the co-fermentation reactor

DLB1.0 dynamic lignocellulosic bioethanol model version
1.0

Ea activation energy for enzyme 1, cal/mol
Ea,ˇG activation energy for enzyme 2, cal/mol
EaPT

1,Xy activation energy reaction to produce xylose, J/mol

EaPT
2,Xy activation energy for xylose degradation, J/mol

EaPT
1,A activation energy reaction to produce arabinose,

J/mol
EaPT

2,A activation energy reaction for arabinose degrada-
tion, J/mol

EaPT
1,G activation energy reaction to produce glucose, J/mol

EaPT
2,G activation energy reaction for glucose degradation,

J/mol
EaPT

1,F activation energy reaction to produce furfural, J/mol

EaPT
2,F activation energy reaction for furfural degradation,

J/mol
EaPT

1,ASL activation energy reaction to produce ASL, J/mol

EaPT
2,ASL activation energy reaction for ASL degradation,

J/mol

EaPT
3,ASL activation energy for reversible reaction to produce

ASL, J/mol
EL1 enzyme loading of exo-�-1,4-

cellobiohydrolase + endo-�-1,4-glucanase,
mg-enzyme/g-cellulose

EL2 enzyme loading of �-glucosidase, mg-enzyme/g-
cellulose

E1 max maximum mass of enzyme 1 that can be adsorbed
onto a unit mass of substrate, g-protein/g-substrate

E2 max maximum mass of enzyme 2 that can be adsorbed
onto a unit mass of substrate, g-protein/g-substrate

Etmax,G ethanol concentration above which cells do not
grow in glucose fermentation, 95.40 for Et ≤ 95.4 g/L,
129.90 for 95.4 g/L < Et ≤ 129.9 g/L

Etmax,Xy ethanol concentration above which cells do not
grow in xylose fermentation, g/L

Et′
max,G ethanol concentration above which

cells do not produce ethanol in glu-
cose fermentation, 103 for Et ≤ 103 g/L,
136.40 for 103 g/L < Et ≤ 136.4 g/L

Etmax,Xy ethanol concentration above which cells do not pro-
duce ethanol in xylose fermentation, g/L

Es[f(x,�i)] expected value of the stochastic optimization cost
function

f(x,(�i)) uncertain term of the stochastic optimization cost
function, USD/gal-ethanol

g set of inequality constrains
h vector of equality constrains
K1ad dissociation constant for enzyme 1, g-protein/g-

substrate
K2ad dissociation constant for enzyme 2, g-protein/g-

substrate
k1 ad,Eq rate of adsorption in equilibrium for enzyme 1
k2 ad,Eq rate of adsorption in equilibrium for enzyme 2
kEH

1,G reaction rate constant for glucose 1 in the enzymatic
hydrolysis, g/(mg h)

kEH
2,G reaction rate constant for glucose 2 in the enzymatic

hydrolysis, h−1

kEH
G 2 reaction rate constant for cellobiose formation in the

enzymatic hydrolysis, g/(mg h)
KEH

1 IEt inhibition constant for ethanol 1 in the SSCF unit,
g/kg

KEH
1 IG inhibition constant for glucose 1, g/kg

KEH
2 IG inhibition constant for glucose 2, g/kg

KEH
3 IG inhibition constant for glucose 3, g/kg

KEH
1 IG 2 inhibition constant for cellobiose 1, g/kg

KEH
2 IG 2 inhibition constant for cellobiose 2, g/kg

KEH
1 IXy inhibition constant for xylose 1, g/kg

KEH
2 IXy inhibition constant for xylose 2, g/kg

KEH
3 IXy inhibition constant for xylose 3, g/kg

KCF
1 G Monod constant, for growth on glucose, g/L

KCF
2 Xy Monod constant, for growth on xylose, g/L

K ′CF
5 IG inhibition constant, for product formation from glu-

cose, g/L
K ′CF

6 IXy inhibition constant, for product formation from
xylose, g/L

K ′CF
5 G Monod constant, for product formation from glu-

cose, g/L
K ′CF

6 Xy Monod constant, for product formation from xylose,
g/L
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