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Stochasticity in the dynamics of small reacting systems

requires discrete-probabilistic models of reaction kinetics

instead of traditional continuous-deterministic ones. The

master probability equation is a complete model of randomly

evolving molecular populations. Because of its ambitious

character, the master equation remained unsolved for all but

the simplest of molecular interaction networks. With the first

solution of chemical master equations (CMEs), a wide range of

experimental observations of small-system interactions may be

mathematically conceptualized.
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Introduction
Ramkrishna and Amundson discussed in a compelling

2004 review how mathematical modeling of chemical

reaction phenomena propelled chemical engineering to

its unique, successful identity [1��]. For example, the

work by Bilous and Amundson set the foundation for

chemical reactor stability and sensitivity analysis [2��,3].

Aris and Amundson then built on this foundation, devel-

oping the chemical reactor control theories still taught in

chemical engineering programs worldwide [4,5].

An argument can be made, in an analogous way, that

mathematical models of biological systems can become

an important component for progress in biological engin-

eering. Of course, although the principles of kinetics

apply to biological systems, these systems differ from

industrial-scale chemical systems in numerous funda-

mental ways, including this one: biomolecular systems

are often far from the thermodynamic limit.

The thermodynamic limit is theoretically attained when

the number of molecules of chemical species in the

system increases toward infinity. If reactants of a reaction

are near the thermodynamic limit, continuous-determi-

nistic modeling formalisms, that is, using ordinary differ-

ential equations, are accurate representations of reality.

Biomolecular systems cannot be assumed to be near the

thermodynamic limit. For example, if DNA is one of the

interacting components, as is often the case in transcrip-

tion kinetics, the number of DNA molecule copies in a

cellular organism may be as small as 1. In such cases, using

ordinary differential equations for simulating the reaction

kinetics is bound to result into erroneous results. Stochas-

tic models that account for the randomness of small

reacting systems are better suited to model biomolecular

systems.

The importance of modeling formalisms appropriate

for systems away from the thermodynamic limit was

recognized more than 50 years ago by McQuarrie,

Moyal and Oppenheim, among others [6��,7–10]. These

physical chemists developed the chemical master

equation (CME) that follows the time changes of the

probability the state is at any point in the available state

space.

The common form of the CME is equivalent to the more

general Chapman–Kolmogorov equation as applied to

Markov processes [7]. In particular, reaction events are

modeled with a Markov chain with a discrete set of

possible states, or ‘state space’, occurring in continuous

time. Here, states refer to numbers of molecules present

in the system. In general, for time t, this will be a vector

X(t) = [X1, . . ., XN], where Xi is number of molecules of

the ith chemical species with i = 1, . . ., N.

Transitions between states of the Markov chain occur

when a chemical reaction occurs. Reactions in biological

systems may include covalent reactions, bindings, confor-

mational changes, transcriptional elongation events, etc.

The general form of the CME is:

@PðX; tÞ
@t

¼
X

X 0
½TðXjX 0ÞPðX 0; tÞ � TðXjX 0ÞPðX; tÞ� (1)

where P(X;t) is the probability of being in state X at time t.
The transition probability T(XjX0) of going from state X0

to state X per unit time is completely determined by the

reaction event kinetics.
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The CME describes the dynamics of stochastic systems

exactly, but has been until recently mathematically

intractable for all but the simplest of linear systems

[6��]. The reason analytical solutions to the CME

remained elusive becomes clear when the master

equation is recast in equivalent terms of probability

moments — the probability distribution average, the

variance, and so on:

@m

@t
¼ Am þ A0m0 (2)

where m is the vector of moments up to order M and A is

the matrix describing the linear portion of the moment

equations. On the right, m0 is the vector of higher-order

moments, and the corresponding matrix A0.

Generating the matrices in Eqn 2 can be performed either

analytically [11,12] or numerically [13]. For linear systems

with only 0th or 1st order reactions, A0 is empty. For other

systems, A0 is not empty and the set of ODEs becomes

infinite, and thus intractable.

Without the ability to close the set of equations in 2, or

otherwise solve the CME, scientists turned to approxi-

mations. In 1976, Gillespie presented a computer algor-

ithm to sample the master probability distribution with

numerical simulations of networks of reactions [14��,15].

Although Gillespie’s methods were not widely recognized

for almost 20 years, his algorithms found fertile ground for

development in efforts to model biological systems. Nowa-

days, a community of scientists and engineers is continu-

ally working to improve the computational efficiency and

accuracy of algorithms that simulate chemical reacting

systems [16�,17�,18–20,21�,22��,23–25].

We joined the efforts of this community, working to

improve the computational efficiency and accuracy of

algorithms that simulate stochastic chemical reacting sys-

tems. We developed a hybrid stochastic-discrete and sto-

chastic-continuous modeling formalism for treating

reacting systems that span multiple time scales [26�,27].

We worked on probabilistic steady-state approximations

[28], stochastic model reduction techniques [29–31], and

adaptive time-stepping algorithms for stochastic differen-

tial equations [32]. We made our algorithms publicly

available on sourceforge.net [33–35] and used them to

simulate gene regulatory networks [36–39,40�,41].

Zero-information closure of the master
chemical equation
It was our work on probability moments [12,13] that led to

the solution of the master equation. We modeled the

master probability with its moments, that is, the mean,

variance, skewness, etc. (Eqn 2). As explained, the chal-

lenge has always been that for nonlinear reaction net-

works, lower-order moments depend on higher order ones

(the mean depends on the variance, the variance depends

on the skewness, and so on and so forth). There is then no

closure scheme.

However, we quickly realized that although the

numerical value of higher-order moments is too signifi-

cant to be neglected, higher-order moments contribute

little information in reconstructing the master prob-

ability. Our zero-information closure (ZI-closure)

scheme then finds the lower-order moments by max-

imizing the information entropy of any reaction network

[42��].

This section briefly explains the zero-information

moment closure method. It concludes with the example

of the Schlögl model in order to clarify the calculation of

several important equations [43]. This section expands

upon a previously described ODE solving scheme and

steady-state determination method [42��].

For simplicity’s sake we limit the discussion to one-

dimensional systems. We begin by defining the infor-

mation entropy for a single component system with a

probability distribution p(x):

H ¼ �
X1

x¼0

pðxÞ ln pðxÞ (3)

For an unconstrained system the resulting maximum-

entropy distribution is simply uniform. However, values

of the lower-order moments, m, act as constraints on the

system. The result is best solved using a Lagrange

multiplier method (here assuming a simple component

with M known lower-order moments):

L ¼ H � l0g0 � l1g1 � � � � � lMgM

g0 ¼
X1

x¼0

pðxÞ � 1

g1 ¼
X1

x¼0

x pðxÞ � hxi

..

.

gM ¼
X1

x¼0

xM pðxÞ � hxMi

(4)

The maximum is found by differentiating by p(x) and

setting the result to zero:

@L

@ pðxÞ ¼ �ln pðxÞ � 1 � l0 � l1x � � � � � lMxM ¼ 0 (5)

or, trivially:

pHðxÞ ¼ expð�1 � l0 � l1x � � � � � lMxMÞ (6)

An analytical expression for the maximum-entropy distri-

bution is determined with the same number of

parameters as the number of known lower-order

moments.
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