

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on modeling of UV/Na₂S₂O₈/FeS₂ process in amoxicillin removal using Box-Behnken methodology

Roshanak Rezaei Kalantary ^{a,b}, Massuomeh Rahmatinia ^{a,*}, Masoud Moradi ^c

^a Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran

^b Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran ^c Research center for Environmental Determinants of Health, Kermanshah University of Medical Sciences,

Kermanshah, Iran

ARTICLE INFO

Article history: Received 3 June 2018 Received in revised form 14 June 2018 Accepted 27 June 2018 Available online 2 July 2018

Keywords: Amoxicillin Box-Behnken UV/Na₂S₂O₈/FeS₂

ABSTRACT

Among the pharmaceutical compounds, antibiotics have been paid specific consideration, due to their acute and chronic toxic effects on organisms. Amoxicillin (AMX) is used widely for treatment of bacterial infections. About 80% of amoxicillin excreted unchanged and enters the aquatic environment through different routes including disposal of municipal wastewaters, hospital wastewaters and farm wastewaters. In this study degradation of amoxicillin by UV/Na₂S₂O₈/FeS₂ process was evaluated. According to the results, the R-squared and adjusted R-squared were 0.9877 and 0.9828, respectively. The AMX removal efficiency was 93% at optimum conditions. Thus, UV/Na₂S₂O₈/FeS₂ process is a useful process for amoxicillin removal.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.dib.2018.06.109

2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author: Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran

E-mail address: m.rahmatinya@gmail.com (M. Rahmatinia).

Subject area More specific subject area Type of data How data was acquired	Environmental engineering Advanced oxidation process Figures and tables All degradation tests were done in a reactor batch (Volume of 1 L), equipped with a UV-C lamp (16 W). Three level of each parameter was evaluated using BOX-Behnken design. A High Liquid Performance Chromatography (HPLC) was used for the determination of AMX concentration.
Data format	Analyzed
Experimental factors	Measuring of AMX concentrations under various levels of initial AMX concentration, solution pH, Persulfate concentration, dose of FeS_2 and contact time to obtain optimum AMX removal from aqueous solutions.
Experimental features	Optimization of AMX degradation using BOX-Behnken design.
Data source location	Iran University of Medical sciences, Tehran, Iran
Data accessibility	Data are available within paper.

Specifications Table

Value of data

• The synthesized catalyst has properties include earth abundant, low cost, high absorption coefficient and good photocatalytic activity. Also, pyrite catalyst is reusable.

• This research shows a statistical method (Box-Behnken design) to optimize AMX removal from aqueous solution.

• The obtained data will be appropriate for AMX removal from water and wastewater.

1. Data

The level of variables and their codes are shown in Table 1. For optimization of UV/Na₂S₂O₈/FeS₂ process, Box-Behnken design (BBD) was applied as a response surface method [1–3]. The adequacy of the model was checked using analysis of variance (ANOVA) (Table 2). P-values < 0.05 showed that the model is statistically significant [4]. Five variables (initial AMX concentration, pyrite dose, per sulfate concentration, time and pH) had linearly significant effect with p-value < 0.05. The R-Squared value (0.9828) is close to adjusted R-squared (0.9877) implying high importance of the model [5]. The diagrams of normal probability of the studentized residuals and the predicted against experimental values are shown in Figs. 1 and 2, respectively. Fig. 3 shows the interaction effects of variables on AMX removal efficiency. According to the results, a quadratic equation between dependent variable (AMX removal %) and independent variables was obtained as follows:

 Table 1

 Levels of independent variables and experimental range in Box-Behnken design.

Factors	Range and level		
	-1	0	+1
A: Initial AMX (mg/l)	10	40	70
B: catalyst load (g/L)	1	2	3
C: per sulfate concentration (mM)	0.5	2	3.5
D: Time(min)	30	45	60
E:pH	3	6	9

Download English Version:

https://daneshyari.com/en/article/6596713

Download Persian Version:

https://daneshyari.com/article/6596713

Daneshyari.com