ARTICLE IN PRESS

Data in Brief 🛛 (■■■) ■■■-■■■

Please cite this article as: M. Zhao, et al., Performances of full cross-validation partial least squares regression models developed using Raman spectral data for the prediction of bull beef sensory attributes, Data in Brief (2018), https://doi.org/10.1016/j.dib.2018.04.056

2

M. Zhao et al. / Data in Brief ■ (■■■■) ■■■-■■■

55 **Specifications Table**

57 58	Subject area	Spectroscopy, Chemometrics
59	More specific	Performance of PLSR models developed using selected Raman shift ranges (i.e.
60	subject area	250–3380 cm ⁻¹ , 900–1800 cm ⁻¹ and 1300–2800 cm ⁻¹)
61	Type of data	Table
62	How data was	Raman spectroscopy, Results of sensory analysis, Chemometrics
63	acquired	
64	Data format	.doc
65	Experimental	Raman spectral data were pre-treated using Savitzky Golay (S.G.) derivation with
66	factors	2nd or 5th order polynomial baseline correction.
67	Experimental	-
68	features	
69	Data source	School of Biosystems and Food Engineering, University College Dublin, Belfield,
70	location	Dublin 4, Ireland
71	Data accessibility	Data is with this article
72		

Value of the data

- To demonstrate PLSR models developed using Raman spectra in the 1300-2800 cm⁻¹ range can give best prediction performance on sensory attributes of bull beef.
- Results of this work are in agreement with a previous study by [2] that the Raman frequency range of 1300–2800 cm⁻¹ is the most suitable range for prediction of bull beef eating quality parameters.
- This data suggested other researchers to select an optimal Raman shift range for further meat science studies.

1. Data

PLSR models were developed on Raman data pre-treated using Savitzky Golay (S.G.) derivation 88 with 2nd and 5th order polynomial baseline correction. Prediction performance of models developed 89 using selected Raman shift ranges (i.e. 250-3380 cm⁻¹, 900-1800 cm⁻¹ and 1300-2800 cm⁻¹) were 90 summarized in Table 1. PLS models developed using S.G. derivation pre-treated Raman spectra in the 91 1300-2800 cm⁻¹ range performed best (R²CV values of 0.36-0.84) while spectra in the range 900-92 1800 cm^{-1} performed worst (R²CV values of 0.03–0.66). 93

96 2. Experimental design, materials and methods

98 For the prediction of beef sensory attributes, partial least squares regression (PLSR) models were developed using pre-processed Raman spectroscopic data (X data) collected on the 21st day post-99 mortem using pre-selected frequency ranges (i.e. $250-3380 \text{ cm}^{-1}$, $900-1800 \text{ cm}^{-1}$, $1300-2800 \text{ cm}^{-1}$); 100 these were selected on the basis of spectral signal intensities. Measured values of sixteen sensory 101 attributes were used as individual Y variable for PLS regression. Leave-one-out cross-validation was 102 103 performed to evaluate the performance of PLSR models using parameters such as root mean square error of calibration (RMSEC) and cross-validation (RMSECV), the coefficient of determination on 104 105 calibration (R2C) and cross-validation (R^2CV) and the bias which is calculated as the difference between the average of actual and predicted values for each data set [3]. For a satisfactory prediction 106 107 performance, the value of R^2 is expected to be close to 1 while values of RMSECV and bias are 108 expected to be close to 0.

Please cite this article as: M. Zhao, et al., Performances of full cross-validation partial least squares regression models developed using Raman spectral data for the prediction of bull beef sensory attributes, Data in Brief (2018), https://doi.org/10.1016/j.dib.2018.04.056

56

73 74

75 76 77

78

79

80

81

82

83 84 85

86 87

94 95

97

Download English Version:

https://daneshyari.com/en/article/6596750

Download Persian Version:

https://daneshyari.com/article/6596750

Daneshyari.com