

Contents lists available at ScienceDirect

Data in Brief

Data Article

Phenotypic characterization of an Arabidopsis T-DNA insertion line SALK_063500

Natasha J. Sng a, Anna-Lisa Paul a,b, Robert J. Ferl a,b,c,*

- ^a Plant Molecular and Cellular Biology, University of Florida, Fifield Hall, 2550 Hull Road, Gainesville, FL 32611. USA
- ^b Horticultural Science Department, University of Florida, Fifield Hall, 2550 Hull Road, Gainesville, FL 32611, IISA
- ^c Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, 2033 Mowry Road, Gainesville, FL 32601, USA

ARTICLE INFO

Article history: Received 12 October 2017 Accepted 21 March 2018 Available online 26 March 2018

Keywords: Arabidopsis T-DNA SALK_063500 Silique Pollen Phenotype AT1G05290

ABSTRACT

In this article we report the identification of a homozygous lethal T-DNA (transfer DNA) line within the coding region of the At1G05290 gene in the genome of Arabidopsis thaliana (Arabidopsis) line, SALK_063500. The T-DNA insertion is found within exon one of the AT1G05290 gene, however a homozygous T-DNA allele is unattainable. In the heterozygous T-DNA allele the expression levels of AT1G05290 were compared to wild type Arabidopsis (Col-0, Columbia). Further analyses revealed an aberrant silique phenotype found in the heterozygous SALK_063500 plants that is attributed to the reduced rate of pollen tube germination. These data are original and have not been published elsewhere.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area Biology
More specific subject area Plant by
Type of data Tables,

Plant biology Tables, Graphs, Figures

E-mail address: robferl@ufl.edu (R.J. Ferl).

^{*} Corresponding author.

How data was acquired

DNA-PCR, Quantitative Realtime PCR (qPCR), Plant phenotypes, Pollen tube germination assay, Image J analyses

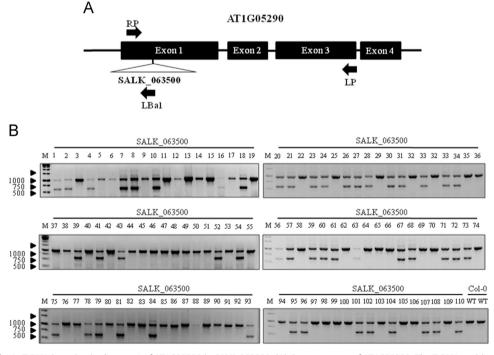
Data format

Experimental factors

Experimental features

DNA-PCR was employed to identify the T-DNA insertion in SALK_063500. AT1G05290 expression levels were examined with qPCR. Both silique and pollen tube germination phenotypes were recorded.

Data source location


DNA-PCR, Quantitative Realtime PCR (qPCR), Plant phenotypes, Pollen tube germination phenotypes, Pollen tube germination in SALK_063500. AT1G05290 expression levels were examined with qPCR. Both silique and pollen tube germination phenotypes were recorded.

Data is within this article.

Value of the data

Data accessibility

- T-DNA insertion lines provide an important resource for genetic analyses in plant research, and SALK lines are the most commonly used T-DNA insertion lines. Therefore assessments of phenotypes observed in SALK lines are valuable assets for advancing our understanding of basic plant biology.
- Documentation of the phenotype of the SALK_063500 line will make the plant community aware of the role AT1G05290 plays in pollen development, thereby furthering research in this field.
- The data presented could provide insights into understanding the molecular mechanisms of male sterility in plants.

Fig. 1. T-DNA insertion in the exon1 of AT1G05290 in SALK_063500. (A) Gene structure of AT1G05290. The T-DNA position is +127 bp after the transcription start site. Primers used to screen the SALK_063500 line, indicated by black arrows RP, LBa1, and LP, and were derived from the SALK_DNA primer design web tool (http://signal.salk.edu/tdnaprimers.2.html). (B) PCR amplification of wild type allele band using forward (RP), reverse (LP) and T-DNA band (LBa1). 110 randomly selected SALK_063500 seedlings and two Col-0 wild type (WT) seedlings were used in search for a homozygous T-DNA insertion line, none were identified. Homozygous wild type allele are seen as single bands at 991 bp whereas heterozygous individuals have double bands, with a single wild type allele band at 991 bp and a T-DNA allele band at around 440-740 bp. All primer sequences are listed in Table 1.

Download English Version:

https://daneshyari.com/en/article/6596811

Download Persian Version:

https://daneshyari.com/article/6596811

<u>Daneshyari.com</u>