

Contents lists available at ScienceDirect

Data in Brief

Data Article

Two-dimensional NMR data of a series of methylcellulose with different degrees of substitution

Hiroyuki Kono

Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 0591275, Japan

ARTICLE INFO

Article history: Received 2 November 2017 Accepted 3 April 2018 Available online 5 April 2018

Keywords: NMR Methylcellulose Cellulose ether Spectral data

ABSTRACT

This article contains two-dimensional (2D) NMR experimental data for a series of methylcellulose (MC) with different substitution degrees (DS), obtained by the Bruker BioSpin 500 MHz NMR spectrometer (Germany). The data facilitated the ¹H and ¹³C chemical shifts of eight anhydroglucose units (AGUs) comprising MC chains—unsubstituted, 2-mono-, 3-mono-, 6-mono-, 2,3-di-, 2,6-di-, 3,6-di-, and 2,3,6-tri-substituted AGUs. Data include analyzed the 2D NMR spectra of the MC samples, which are related to the subject of an article in *Carbohydrate Polymers*, entitled "NMR characterization of methylcellulose: Chemical shift assignment and mole fraction of monomers in the polymer chains" (Kon et al., 2017) [1]. These data can be very helpful to assign the ¹H and ¹³C chemical shifts of the other cellulose derivatives, especially cellulose ethers.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area Chemistry
More specific subject area Structural analysis
Type of data NMR spectra

DOI of original article: https://doi.org/10.1016/j.carbpol.2016.10.056

E-mail address: kono@tomakomai-ct.ac.jp

How data was acquired	NMR, Bruker BioSpin AVIII 500 MHz spectrometer equipped with a Bruker BioSpin z-gradient dual-resonance BBFO probe (5 mm).
Data format	Analyzed
Experimental factors	About 35 mg of each sample dissolved in 700 μ L of 99.9% dimethyl-sulfoxide (DMSO)- d_6 containing 0.03% tetramethylsilane (TMS).
Experimental features	All NMR experiments were performed at 363 K.
Data source location	National Institute of Technology, Tomakomai College, Nishikioka 443,
	Tomakomai, Hokkaido 0591275, Japan
Data accessibility	Data are with this article.

Value of the data

- The following data detail NMR characterization of a MC samples with different DS.
- The NMR data can be helpful to assign the chemical shifts of AGUs comprising other cellulose derivatives.
- NMR parameters used for the obtained data can be useful for structural characterization of complex polysaccharides.

1. Data

Cellulose is a linear 1,4- β -D-glucan with three hydroxyl groups per anhydroglucose units (AGU). Each AGU contains three hydroxyl groups at the 2, 3, and 6 positions. In the case of methylcellulose (MC), substitution can occur at theses hydroxyl groups, resulting in the formation of 8 different AGUs in the structure except for total degree of substitution (DS) of 3, namely, unsubstituted, 2-mono-, 3-mono-, 6-mono-, 2,3-di-, 2,6-di-, 3,6-di-, and 2,3,6-tri-substituted AGUs (Fig. 1). The complexity of

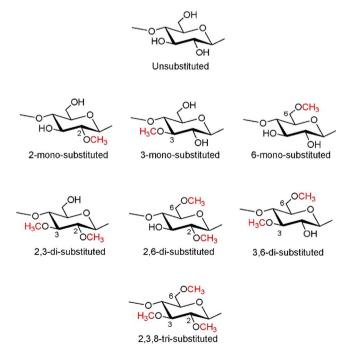


Fig. 1. Eight anhydroglucose units (AGUs) comprising methylcellulose (MC) chains.

Download English Version:

https://daneshyari.com/en/article/6596851

Download Persian Version:

https://daneshyari.com/article/6596851

<u>Daneshyari.com</u>