

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data article

UV light absorption parameters of the pathobiologically implicated bilirubin oxidation products, MVM, BOX A, and BOX B

Nathaniel A. Harris^{a,b}, Robert M. Rapoport^{a,b,*}, Mario Zuccarello^{c,d}, John E. Maggio^{a,1}

^a Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA

^b Research Service, Veterans Affairs Medical Center, Cincinnati, OH, USA

^c Department of Neurosurgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA

^d Surgical Service, Veterans Affairs Medical Center, Cincinnati, OH, USA

ARTICLE INFO

Article history: Received 2 October 2017 Received in revised form 24 March 2018 Accepted 3 April 2018 Available online 12 April 2018

Keywords: Bilirubin oxidation products BOX A BOX B MVM λ_{max} Extinction coefficient Synthesis

ABSTRACT

The formation of the bilirubin oxidation products (BOXes), BOX A ([4-methyl-5-oxo-3-vinyl-(1,5-dihydropyrrol-2-ylidene)acetamide]) and B (3-methyl-5-oxo-4-vinyl-(1,5-dihydropyrrol-2-ylidene)acet-BOX amide), as well as MVM (4-methyl-3-vinylmaleimide) were synthesized by oxidation of bilirubin with H₂O₂ without and with FeCl₃, respectively. Compound identity was confirmed with NMR and mass spectrometry (MS; less than 1 ppm, tandem MS up to MS⁴). UV absorption profiles, including λ_{max} , and extinction coefficient (ε ; estimated using NMR) for BOX A, BOX B, and MVM in H₂O, 15% CH₃CN plus 10 mM CF₃CO₂H, CH₃CN, CHCl₃, CH₂Cl₂, and 0.9% NaCl were determined. At longer wavelengths, λ_{max} 's for 1) BOX A were little affected by the solvent, ranging from 295–297 nm; 2) BOX B, less polar solvent yielded λ_{max} 's of lower wavelength, with values ranging from 308-313 nm, and 3) MVM, less polar solvent yielded λ_{max} 's of higher wavelength, with values ranging from 318-327 nm. Estimated ɛ's for BOX A and BOX B were approximately 5- to 10-fold greater than for MVM.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

¹ Deceased.

https://doi.org/10.1016/j.dib.2018.04.010

2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Correspondence to: Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati and Veterans Affairs Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.

E-mail address: robert.rapoport@uc.edu (R.M. Rapoport).

Subject area	Chemistry
More specific subject area	Bilirubin oxidation products detection
Type of data	Table, figure
How data was acquired	NMR, mass spectroscopy, UV spectrometry, HPLC
Data format	Raw, analyzed
Experimental factors	Oxidation of bilirubin, extraction with chloroform
Experimental features	Bilirubin oxidation products BOX A, BOX B, and MVM were synthesized
	by the oxidation of bilirubin, purified by HPLC and UV absorption profiles
	and extinction coefficients determined
Data source location	Cincinnati, OH USA
Data accessibility	The data are accessible within the article.

Specifications Table

Value of the data

- First report (to our knowledge) of UV absorption profile, including λ_{max}, of MVM in solvents relevant to detection in biologic/pathobiologic samples.
- Comparison of UV absorption profiles of MVM with BOX A and BOX B.
- First report (to our knowledge) of BOX B extinction coefficient (ε; estimated using NMR), along with comparison to BOX A and MVM estimated ε's in different solvents, along with MS at less than 1 ppm and tandem MS up to MS⁴.
- Novel methodology to increase MVM yield through FeCl₃ inclusion in oxidation reaction mixture.
- Data will potentially assist in the detection and determination of these BOXes in pathobiologies associated with elevated bilirubin.

1. Data

The bilirubin oxidation products (BOXes), MVM (4-methyl-3-vinylmaleimide), along with BOX A ([4-methyl-5-oxo-3-vinyl-(1,5-dihydropyrrol-2-ylidene)acetamide]) and BOX B (3-methyl-5-oxo-4-vinyl-(1,5-dihydropyrrol-2-ylidene)acetamide), have been implicated in the deleterious effects associated with subarachnoid hemorrhage (SAH; [1-5]). The detection method utilized to determine the presence of these compounds is UV absorption associated with reversed phase-HPLC [1]. However, reports (to our knowledge) of the UV absorption profile and/or λ_{max} of MVM have not been reported for the solvent utilized in their detection (H₂O/CH₃CN), but are limited to CH₃OH [6,7]. Also, reports of these absorption characteristics are limited (to our knowledge) for BOX A to H₂O and CH₃CN, and for BOX B to H₂O [1,8]. Further, extinction coefficients (ε) for MVM and BOX A are limited (to our knowledge) to CH₃OH and CH₃CN, respectively [6,7,9], and are lacking for BOX B. Thus, it is anticipated that the present data will assist in the detection and quantitative determination of BOXes levels in biologic samples from SAH, as well as in other pathobiologies associated with elevated bilirubin.

1.1. UV absorption

UV absorption spectra of BOX A, BOX B and MVM were determined in CHCl₃, CH₂Cl₂, CH₃CN, 15% CH₃CN plus 10 mM CF₃CO₂H, H₂O, and 0.9% NaCl (Fig. 1, Table 1). At longer wavelengths, BOX A λ_{max} 's were little affected by the solvent, ranging from 295–297 nm (Fig. 1, Table 1). With BOX B, less polar solvent yielded λ_{max} 's of lower wavelength, with values ranging from 308–313 nm (Fig. 1, Table 1). With MVM, less polar solvent yielded λ_{max} 's of higher wavelength, with values ranging from 318–327 nm (Fig. 1, Table 1). These λ_{max} values corresponded to previously reported λ_{max} 's at longer wavelengths, as limited to the following solvents: BOX A of 300 nm in H₂O and 295 nm in CH₃CN [1,2], BOX B of 310 nm in H₂O [1], and MVM of 317 and 319 nm in CH₃OH [6,7].

Download English Version:

https://daneshyari.com/en/article/6596853

Download Persian Version:

https://daneshyari.com/article/6596853

Daneshyari.com