

Contents lists available at ScienceDirect

Data in Brief

Data Article

Chemical structure of hollow carbon spheres and polyaniline nanocomposite

Linghao He, Bingbing Cui, Jiameng Liu, Yingpan Song, Minghua Wang, Donglai Peng, Zhihong Zhang*

Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China

ARTICLE INFO

Article history: Received 29 November 2017 Accepted 30 January 2018 Available online 3 February 2018

ABSTRACT

In this data article, the chemical data of hollow carbon spheres and polyaniline (HCS@PANI) nanocomposite are presented for the research article entitled "Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion" (He et al., 2018) [1]. The data includes chemical structure and components obtained by Raman spectra, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption and desorption isotherms.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Chemistry
	Biosensor Material
ject area Type of data	Figures

DOI of original article: https://doi.org/10.1016/j.snb.2017.11.161

* Corresponding author.

E-mail address: mainzhh@163.com (Z. Zhang).

How data was acquired	Raman spectra were taken with Renishaw inVia-Raman Spectroscopy, equipped with a holographic grating of 1800 lines mm ⁻¹ and a He-Ne laser (632.8 nm) as an excitation source.
	X-ray photoelectron spectroscopy (XPS) analysis was obtained from an AXIS HIS 165 spectrometer (Kratos Analytical, Manchester, UK) with a monochromatized Al KR x-ray source (1486.71 eV photons).
	The N ₂ adsorption-desorption isotherms were conducted using a Micromeritics ASAP 2010 instrument with a liquid nitrogen at the temperature of 77 K. The specific surface area was calculated by the Brunauer-Emmett-Teller (BET) method.
Data format	Analyzed
Experimental factors	The samples were ground evenly before measurements
Experimental features	The chemical structure and elemental components were examined.
Data source location	Zhengzhou University of Light Industry, Zhengzhou 450002, China.
Data accessibility	Data are presented in this article

Value of the data

- The data presented in this article shows detailed chemical structure of HCS@PANI nanocomposite.
- This data allows other researchers to compare the preparation of HCS@PANI nanocomposite.
- For fabricating nanocomposites with other functional materials provides a suitable way for biosensors application.

1. Data

The chemical structure, surface morphologies, and electrochemical performances of HCS@PANI nanocomposite were discussed the our previous work [1]. Raman spectra of the as-prepared HCS and HCS@PANI nanocomposite are shown in Fig. 1. For the pure HCS sample, the G band at 1591 cm⁻¹ and D band at 1338 cm⁻¹ are observed, which correspond to graphitic carbon and disordered carbon, respectively [2]. In case of HCS@PANI nanocomposite, four major peaks corresponding to

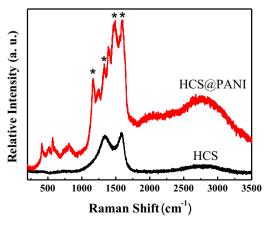


Fig. 1. Raman spectra of HCS and HCS@PANI nanocomposite.

Download English Version:

https://daneshyari.com/en/article/6597006

Download Persian Version:

https://daneshyari.com/article/6597006

<u>Daneshyari.com</u>