

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Lean and Obese Zucker Rat Extensor Digitorum Longus Muscle high-frequency electrical stimulation (HFES) Data: Regulation of MAPKs Associated Proteins

Kevin M. Rice ^{a,b,c,d,*}, Anjaiah Katta ^a, Nandini D.P.K. Manne ^e, Ravikumar Arvapalli ^a, Gautam K. Ginjupalli ^a, Miaozong Wu ^f, Shinichi Asano ^g, Eric R. Blough ^{a,c,h,i}

^a Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA

^b Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA

^c Biotechnology Graduate Program West Virginia State University, Institute, WV, USA

^d Department of Health and Human Service, School of Kinesiology, Marshall University, Huntington, WV, USA

^e Department of Public Heath, Marshall University, Huntington, WV, USA

^f College of Health, Science, and Technology, University of Central Missouri, Warrensburg, MO, USA

^g School of Education, Health, and Human Performance, Fairmont State University, Fairmont, WV, USA

^h Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA

ⁱ Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA

ARTICLE INFO

Article history: Received 15 September 2017 Received in revised form 13 November 2017 Accepted 15 November 2017 Available online 20 November 2017

Keywords: Diabetes Skeletal muscle

ABSTRACT

Anaerobic exercise has been advocated as a prescribed treatment for the management of diabetes: however, alterations in exerciseinduced signaling remain largely unexplored in the diabetic muscle. Here, we compare the basal and the in situ contractioninduced phosphorylation of the mitogen-activated protein kinases (MAPKs) ERK 1/2, p38, and JNK in the lean and obese (fa/fa) Zucker rat extensor digitorum longus (EDL) muscle following a single bout of contractile stimuli. This article represents data associated with prior publications from our (Katta et al., 2009a, 2009b, 2008) [1–3]

E-mail address: rice9@marshall.edu (K.M. Rice).

https://doi.org/10.1016/j.dib.2017.11.054

^{*} Correspondence to: Center for Diagnostic Nanosystems, Marshall University, Room 241D Robert C. Byrd Biotechnology Science Center, 1700 3rd Ave., Huntington, WV 25755-1090, USA. Fax: +304 696 3766.

^{2352-3409/© 2017} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

High-frequency electrical stimulation (HFES) Zucker rat Extensor Digitorum Longus and concurrent Data in Brief articles (Ginjupalli et al., 2017a, 2017b; Rice et al., 2017a, 2017b) [4–7]. © 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific subject area	Diabetic skeletal muscle response to exercise
Type of data	Graph, figure
How data was acquired	Immunoblotting
Data format	Analyzed
Experimental	A high-frequency electrical stimulation (HFES) was used to produce 10 sets of
factors	6 contractions over a 22-min period. Tissues were collected and protein was then isolated from tissue for western blot analysis.
Experimental features	EDL obtained from Lean and Obese male Zucker rats were used in this experiment
Data source location	Huntington, WV USA
Data accessibility	Data is with this article and is related to articles published and in review [1–7].

Value of the data

- The data presented in this Brief is vital to understanding the effect of diabetes on skeletal muscle mechanotransduction.
- This data gives insight into the how diabetes alters tissue response to stimuli.
- This data provides a more thorough understanding of the MAPKs involvement in exercise mediated signaling in both diabetic and non-diabetic muscle tissue.

1. Data

1.1. ERK 1/2

To determine the effect of HFES on EDL from OSXZ and LNZ animals we evaluated the phosphorylation of ERK 1/2 at threonine 202 and tyrosine 204 (p44/p42 thr 202/tyr 204). EDL basal phosphorylation of p44 thr 202/tyr 204 demonstrated no significant difference in the OSXZ when compared to LNZ (Fig. 1A). HFES resulted in an increase in phosphorylation of p44 thr 202/tyr 204 in the LNZ EDL (126.9 \pm 3.8%, 126.3 \pm 4.1%, and 407.2 \pm 31.6%, at 0, 1,and 3 h, p < 0.05) when compared to LNZ contralateral control (Fig. 1A). HFES resulted in an increase in phosphorylation of p44 thr 202/tyr 204 in the OSXZ EDL (242.7 \pm 49.5% at 0 h, p < 0.05) when compared to OSXZ contralateral control (Fig. 1A). EDL basal phosphorylation of p42 thr 202/tyr 204 was higher (88.8 \pm 2.7%, p < 0.05) in the OSXZ when compared to LNZ (Fig. 1B). HFES resulted in an increase in phosphorylation of p42 thr 202/tyr 204 in the LNZ EDL (290.6 \pm 20.5%, 271.0 \pm 4.1%, and 460.3 \pm 16.7%, at 0, 1,and 3 h, p < 0.05) when compared to LNZ contralateral control (Fig. 1B) when compared to LNZ thr 202/tyr 204 in the LNZ EDL (290.6 \pm 20.5%, 271.0 \pm 4.1%, and 460.3 \pm 16.7%, at 0, 1,and 3 h, p < 0.05) when compared to LNZ contralateral control (Fig. 1B). HFES resulted in an increase in phosphorylation of p42 thr 202/tyr 204 in the OSXZ EDL (371.9 \pm 17.8% and 100.0 \pm 28.4%, at 0 and 3 h, p < 0.05) when compared to OSXZ contralateral control (Fig. 1B).

Download English Version:

https://daneshyari.com/en/article/6597358

Download Persian Version:

https://daneshyari.com/article/6597358

Daneshyari.com