

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on fluoride concentration levels in cold and warm season in rural area of Shout (West Azerbaijan, Iran)

Farzaneh Baghal Asghari^a, Ali Akbar Mohammadi^b, Zahra Aboosaedi^a, Mehdi Yaseri^c, Mahmood Yousefi^{a,d,*}

^a Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran

^b Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran

^c Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

^d Students Research Committee, Neyshabur University of Medical Sciences, Neyshabur, Iran

ARTICLE INFO

Article history: Received 12 July 2017 Received in revised form 13 September 2017 Accepted 5 October 2017 Available online 10 October 2017

Keywords: Shout Fluoride Drinking water Season

ABSTRACT

The aim of this study was to determine the concentration of fluoride in drinking water, the distribution system, in 22 villages in Shout (A city in West Azerbaijan province). Sampling of springs and underground water was carried out in two warm and cold seasons. Fluoride concentration were determined through spectrophotometer with a model, DR/5000.The fluoride concentration were compared with Iranian standards and WHO guidelines for drinking water.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area More specific subject area Type of data How data was acquired Data format Water chemistry Water fluoride Table, figure Spectrophotometer (DR/5000, Hach) Raw, analyzed

* Corresponding author at: Students Research Committee, Neyshabur University of Medical Sciences, Neyshabur, Iran. *E-mail address:* mahmood_yousefi70@yahoo.com (M. Yousefi).

http://dx.doi.org/10.1016/j.dib.2017.10.012

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Experimental factors	Water samples were stored in a dark place at room tem- perature in their original sealed plastic containers (200 mL) until the fluoride analysis was made
Experimental features	Determine the concentration levels of fluoride
Data source location	Shout area, West Azerbaijan province, Iran
Data accessibility	Data are included in this article

Value of the data

- The main health outcomes of fluoride, including dental and skeletal fluorosis.
- The Iranian standard of fluoride in drinking water is based on the maximum annual temperature of the area because of temperature impact on water consumption.
- In cooler areas, such as West in Northern Iran, the consumption of drinking water is lower, thus higher fluoride concentrations in drinking water are required.
- Fluoridation of drinking water in rural areas with less than the WHO optimum value is recommended.
- Based on the data, defluoridation of drinking water could be recommended in fluorotic rural areas.

1. Data

Based on Table 1, the average concentration of fluoride in warm and cold seasons (in spring and groundwater) were 0.01–3 and 0.01–4 mg/l, respectively. According Iranian standard (1053IR) World

Table 1 Mean fluoride concentrations (mg/L) in drinking water of rural areas of Shout region according to places and seasons.

Village	illage Source			Cold season Average		Warm season Fluoride concentration				Cold season Fluoride concentration			
		T(°C)	рН	T(°C)	pН	Mean	Min	Max	Sd. ev	Mean	Min	Max	Sd. ev
Azimkandi	Spring	23	7.8	19	7.6	1.39	1.36	1.42	0.03	2	1.8	2.4	0.27
Maranglou	Spring	23	8.9	19	8.9	0.44	0.42	0.46	0.02	1.97	1.94	2	0.03
Injaghadim	Spring	23	8.8	17	8.2	0.01	0	0.03	0.02	1.18	1.15	1.24	0.04
Kolos	Well	24	7.9	19	7.9	1.43	1.36	1.52	0.07	3.1	2.75	3.4	0.30
Shorboulagh	Well	23	7.9	18	7.9	1.52	1.39	1.62	0.10	4	3.9	4.1	0.08
Karimkandi	Well	23	7.8	19	7.8	0.38	0.32	0.45	0.05	0.01	0	0.04	0.02
Fatah	Well	23	8	19	7.8	1.01	0.68	1.41	0.35	1	0.8	1.3	0.21
Molaahmad	Well	23	7.6	19	7.6	3	2.7	3.2	0.24	0.09	0.06	0.11	0.02
Pivasha	Well	23	7.8	19	7.8	0.37	0.3	0.44	0.07	1.25	1.22	1.31	0.04
Gara eyagh	Well	23	7.9	19	7.9	0.45	0.34	0.54	0.09	1.86	1.83	1.91	0.04
Khook	Well	22	7.8	19	7.5	1.38	1.37	1.4	0.01	0.79	0.68	0.89	0.10
Kesharkhi	Well	23	7.8	19	7.8	1.50	1.48	1.52	0.02	1.8	1.78	1.81	0.01
Garazamin	Well	23	7.9	17	7.8	0.20	0.1	0.28	0.08	1.8	1.42	2.3	0.37
Moukhor	Well	23	7.8	19	7.8	0.1	0.06	0.14	0.04	1	0.75	1.25	0.26
Yolagaldi	Well	23	7.8	18	7.8	1.2	1	1.4	0.18	3.5	3.3	3.7	0.18
Margan	Well	23	8.2	19	8.2	1.3	1.08	1.52	0.24	3	2.7	3.2	0.24
Tazakand	Well	23	7.8	19	7.5	0.2	0.12	0.26	0.06	0.2	0.14	0.25	0.05
Geday	Well	23	7.8	19	7.8	1	0.7	1.4	0.32	1.11	1.04	1.18	0.06
Khilajajam	Well	22	7.9	18	7.4	2.5	1.6	3.1	0.73	1	0.79	1.15	0.15
Khezrlou	Well	23	7.9	19	7.8	0.2	0.1	0.26	0.07	1.2	1.06	1.45	0.18
Toura	Well	23	7.8	19	7.9	0.3	0.16	0.36	0.09	1.8	1.62	2.1	0.21
Gabanbasan	Well	23	7.8	19	7.8	1	0.6	1.3	0.32	0.9	0.84	0.98	0.07
1053IR Standard					0.7				1.2				
WHO Standard						0.8				1.2			

Download English Version:

https://daneshyari.com/en/article/6597393

Download Persian Version:

https://daneshyari.com/article/6597393

Daneshyari.com