Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on the effect of miR-15b on the expression of INSR in murine C2C12 myocytes

Won-Mo Yang^a, Kyung-Ho Min^a, Se-Whan Park^a, Wan Lee^{a,b,*}

^a Department of Biochemistry, Dongguk University College of Medicine, Gyeongju-si, Gyeongsangbuk-do 38067, Republic of Korea

^b Endocrine Channelopathy, Channelopathy Research Center, Dongguk University College of Medicine, Goyang-si, Gyeonggi-do 10326, Republic of Korea

ARTICLE INFO

Article history: Received 29 September 2017 Received in revised form 12 October 2017 Accepted 20 October 2017 Available online 1 November 2017

Keywords: MicroRNAs miR-15b Myocyte INSR IRS-1

ABSTRACT

The ectopic expression of miR-15b is linked causally to impaired insulin signaling in human HepG2 hepatocytes through the suppression of INSR (Yang et al., 2015) [1]. In this data article, we further examined the effect of miR-15b on insulin signaling in a murine skeletal muscle cells, C2C12 myocytes. Although the 3'UTR of mouse INSR mRNA has an appropriate binding site for miR-15b based on TargetScan analysis, the ectopic expression of miR-15b did not suppress the expression and insulin-stimulated phosphorylation of insulin signaling intermediates in C2C12 myocytes. A more detailed understanding of the effects of miR-15b on hepatic insulin resistance can be found in "Obesity-induced miR-15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes" (Yang et al., 2015) [1].

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

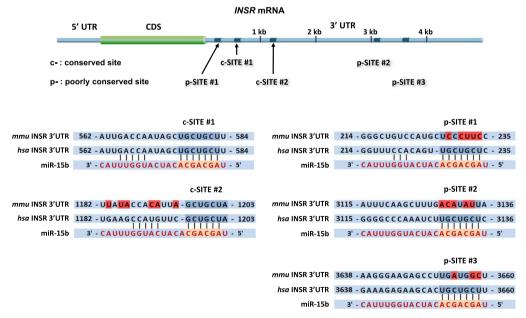
Subject area More specific subject area Cell Biology, Biochemistry Obesity, MicroRNA, Metabolism

https://doi.org/10.1016/j.dib.2017.10.053

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author at: Department of Biochemistry, Dongguk University College of Medicine, Gyeongju-si, Gyeongsangbuk-do 38067, Republic of Korea.

E-mail address: wanlee@dongguk.ac.kr (W. Lee).


Type of data	Figures and text
How data was acquired	TargetScan analysis and immunoblotting
Data format	Analyzed
Experimental	Transfection of miR-15b, Treatment of insulin, Analysis of the expression and
factors	phosphorylation of insulin signaling intermediates
Experimental	C2C12 myocytes were transfected with scRNA or miR-15b mimic. For insulin sti-
features	mulation, 100 nM of insulin was treated during the last 30 min of incubation.
Data source	Dongguk University School of Medicine, Gyeongju-si, Gyeongsangbuk-do 38067,
location	Korea
Data accessibility	The data are available with this article

Value of the data

- The data are useful for understanding the putative binding sites of miR-15b on the 3'UTR of human and mouse INSR mRNA.
- The effect of miR-15b on the insulin signaling pathway in mouse skeletal muscle cells.
- The data can be compared with the target of miR-15b between hepatocytes and myocytes.

1. Data

Intake of high saturated fatty acid (SFA) in diets results in ectopic lipid accumulation in the liver and skeletal muscle, which is a major risk factor for insulin resistance, type 2 diabetes, and metabolic syndrome [2]. The dysregulation of certain miRNAs targeting the insulin signaling molecules is closely

Fig. 1. Putative targeting sites of miR-15b in the 3'UTRs of murine and human INSR. The miR-15b targeting INSR 3'UTR was analyzed using TargetScan. The seed sequence of miR-15b predicted to target INSR 3'UTRs (orange background) was identified in murine (*mmu*) and human (*has*).

Download English Version:

https://daneshyari.com/en/article/6597449

Download Persian Version:

https://daneshyari.com/article/6597449

Daneshyari.com