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a b s t r a c t

Forces acting on spherical bubbles in a subchannel of a rod bundle with triangular rod arrangement (the
pitch to diameter ratio is P=D ¼ 1:34) have been studied at low bubble Reynolds numbers O(0.1) � O(1).
The bubble motion has been simulated resolving the interface of the bubble by using the lattice Boltz-
mann method. Steady drag and virtual mass forces have been determined from the simulation results.
Based on the simulation data, the relation CD ¼ 16:375=ReT could be established between the steady drag
coefficient CD and the terminal Reynolds number ReT when the diameter ratio k ¼ d=D of the bubble d and
the channel D is less than 0.2. It is found that the virtual mass coefficient can achieve as high value as 7.2,
which is a consequence of strong wall effects. Considering interactions between bubbles, cooperation in
the axial direction and hindering in the lateral direction could be observed. We demonstrate that the rela-
tion between the terminal velocity of a bubble and that of the suspension follows a Richardson–Zaki like
correlation, but the exponent is not only a function of the Eotvos and Morton numbers, but it also
depends on the particle configuration.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

For accurate large scale modeling of industrial two-phase flow
problems we need reliable models for interfacial mass, momentum
and energy transfers. In case of bubble flows, the interfacial
momentum transfer is due to the forces acting between the liquid
phase and the gas bubbles. The problem of evaluating the
hydrodynamic forces acting on a bubble in a fluid is a long standing
problem. Models used for predicting forces have usually been
developed by some analytical technique applying significant
simplifications (inviscid or creeping flow and asymptotic correc-
tions) in order to keep the problem analytically tractable [1]. Then,
such models can be adopted to specific flow problems only by
tayloring their forms and parameters based on measurement
data.

In the last few decades, numerical experiments proved to be
good alternatives to real measurements in two-phase flow model-
ing, just like in many other areas of physics, see e.g. [2,3,5–10,4].
However, a vast majority of studies still focus on basic problems
like the study of rising bubble in a periodic box and only a few at-
tempts have been made to get information on bubbly flows in wall
bounded geometries, see e.g. [11–13].

In ligth water nuclear reactors, bubbles can appear in the fuel
assemblies both in normal and accidental situations. Therefore,
the accurate modeling of bubbly flows is vital both from econom-

ical and safety point of views. The fuel assemblies of ligth water
reactors are usually built up as a regular array of fuel rods and
the coolant flows along the rods in the so called subchannels of
the assembly. Depending on the actual design, the rods are
arranged in a triangular or rectangular array. The bundle is tight,
which means that the cross section of the channel is narrow, usu-
ally a few square millimeters.

There are many evidences of that forces acting on bubbles in a
cylindrical channel depend on the diameter ratio k ¼ d=D of the
bubble (d) and the channel (D) as it exceeds 0:06 and 0:12 for
low and large Reynolds numbers, respectively [1]. Since the equiv-
alent diameter of a subchannel of a rod bundle is Oð1Þ [mm], there-
fore wall effects can be expected to be relevant in a subchannel
when the bubble diameter is Oð0:1Þ [mm] or larger.

This fact motivated us to perform numerical simulations of bub-
ble motion in a subchannel of a rod bundle and extract information
on the hydrodynamic forces acting on the bubbles from the
simulation results. A lattice Boltzmann model was developed to
simulate the motion of an individual bubble in the subchannel of
triangular array of rods resolving the interface of the bubble.
Although we have recently used a similar method for the single
phase direct numerical and large eddy simulation of turbulent
flows in a subchannel [17,18], here, as a first attempt, we shall limit
our discussions on laminar flows. In particular, the drag and virtual
mass forces are deduced from the simulation results. In our simu-
lations, both the Eotvos and Reynolds numbers are small so the
bubble remains spherical. It is demonstrated that the simulations
show a consistent picture about the dynamics of bubbles in the
subchannel.
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In Sections 2 and 3 the numerical method and the simulation
results are presented, respectively. Our conclusions are given in
Section 4.

2. The lattice Boltzmann method

The lattice Boltzmann method (LBM) is an innovative technique
for modeling two-phase flows. Many different models have been
developed in the framework of LBM to model bubbly flows see
e.g. [2,14–16,5]. In this work the multicomponent–multiphase
model of Shan and Chen was adopted [19]. This model has been ap-
plied for bubble flow simulations by many authors including the
work of Sankaranarayanan et al. [2,3] who simulated bubble
dynamics in a periodic box and extracted the drag, virtual mass
and lift forces from the simulation results. Since in our problem
the domain is wall bounded, there are some small differences be-
tween our approach and that of used in [2], nevertheless, for com-
pleteness, we briefly review the method we used in our
calculations.

To model multicomponent flows, Shan and Chen proposed [19]
to solve the lattice Boltzmann equation with Bhatnagar–Gross–
Krook collision operator [20]

f r
i ðxþ ciMt; t þ MtÞ � f r

i ðx; tÞ ¼ �
1
sr f r

i � gr
i

� �
; ð1Þ

where fiðx; tÞ is the one-particle velocity distribution function, ci is
the lattice velocity vector, sr is the relaxation time which controls
the rate of approach to the local equilibrium giðx; tÞ, Dt is the time-
step and r ¼ f1;2g is for the two components, respectively.

The local equilibrium distribution is written as
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which is a low Mach number expansion of the Maxwell–Boltzmann
distribution.

For the calculations presented in this paper we used a D3Q19
model, for which the lattice velocity vectors ci and weights wi are
defined by

ci ¼
ð0;0;0Þ i ¼ 0
ð�1; 0;0Þ; ð0;�1;0Þ; ð0;0;�1Þ i ¼ 1 . . . 6
ð�1;�1;0Þ; ð�1;0;�1Þ; ð0;�1;�1Þ i ¼ 7 . . . 18
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wi ¼
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1=36 i ¼ 7 . . . 18
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The density and hydrodynamic velocity of the individual compo-
nents are defined by
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The velocity used in the equilibrium distribution function (2) is cal-
culated from
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where
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P
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and the force Fr
a will be defined later on.

Since we represent two-phases of a single component fluid by
two components, we also define the macroscopic quantities of
the mixture as
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It can be shown that the mesoscopic evolution of the particle distri-
bution functions (1), yields the macroscopic equations [21]
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with some error terms, which can be neglected at low Mach
numbers or can be partially compensated at higher velocities
[22].

That is we solve the Navier–Stokes equations in which the vis-
cosity is given by
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where xris the mass fraction of the component r.
In order to model non-ideal gases, surface tension, etc. we need

to choose a proper form for Fr
a . Shan and Chen proposed to calcu-

late the force as the gradient of particle interaction potentials w
[19]. In this work the same methodology was used, but a new form
of the interaction potential was implemented:

wð1Þ ¼ qð1Þ

T þ C1qð1Þ
ð11Þ

because it can be shown analytically, that using this potential
Maxwell equal area construction can be satisfied in case of a
flat interface [23]. In (11) the parameter T plays the role of
temperature. The coexistence curve and the measurement data
of the surface tension for this potential function can be found
in [25].

For the second component the potential is chosen to be simply
the density, i.e. wð2Þ ¼ qð2Þ, so the second component is an ideal gas.

Finally the interaction force is calculated as the gradient of the
pseudopotential, which in the lattice Boltzmann framework can be
approximated as
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where Gr�r is a Green function and it controls the strength of the
interactions between the components r and �r:

For the computations presented in this work our single phase
lattice Boltzmann code used for turbulent rod bundle flow sim-
ulations was extended for two-components. Just like for single
phase flow, the rod bundle is modeled by periodically coupling
the subchannels to each other both in the lateral and axial direc-
tions. The pitch to diameter ratio of a subchannel is P/D = 1.34
(see Figs. 1 and 2) which value corresponds to the parameters
of a fuel assembly of a VVER 440 nuclear power plant. To make
the calculations fast, domain decomposition was applied in the
axial directions and the computations were run in a Linux PC
cluster. Walls were modeled by the interpolated bounce–back
method of Yu et al. [24]. We use lattice dimensions (lattice spac-
ing and timestep) for all dimensional quantities throughout the
paper. The parameters of the interparticle potential were chosen
to be T ¼ 13 and C1 ¼ 0:01. The critical temperature for this
model is given by T � 14:6 (see [25] for the coexistence curve
and other details). The parameters, which control the interac-
tions between the components were G12 ¼ G21 ¼ 0:01. The relax-
ation parameters of the components sr were unity for both
components.
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