Accepted Manuscript

On the multistate of 2'-hydroxyflavylium-flavanone system. Illustrating the concept of a timer with reset at the molecular level

Stoyanka Slavcheva, Johan Mendoza, Stanislav Stanimirov, Ivan Petkov, Nuno Basílio, Fernando Pina, Vesselin Petrov

PII: S0143-7208(18)30979-3

DOI: 10.1016/j.dyepig.2018.05.066

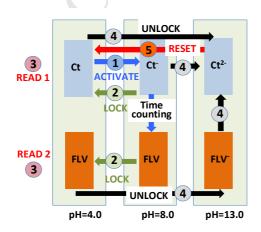
Reference: DYPI 6795

To appear in: Dyes and Pigments

Received Date: 30 April 2018 Revised Date: 25 May 2018 Accepted Date: 25 May 2018

Please cite this article as: Slavcheva S, Mendoza J, Stanimirov S, Petkov I, Basílio N, Pina F, Petrov V, On the multistate of 2'-hydroxyflavylium-flavanone system. Illustrating the concept of a timer with reset at the molecular level, *Dyes and Pigments* (2018), doi: 10.1016/j.dyepig.2018.05.066.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


ACCEPTED MANUSCRIPT

On the Multistate of 2'-hydroxyflavylium-Flavanone System. Illustrating the Concept of a Timer with Reset at the Molecular Level.

Stoyanka Slavcheva, ¹ Johan Mendoza, ² Stanislav Stanimirov, ¹ Ivan Petkov, ¹ Nuno Basílio, ² Fernando Pina, ^{2*} Vesselin Petrov ^{3*}

Abstract

The multistate of species regarding 2'-hydroxyflavylium derivatives have a peculiar behavior due to the formation in moderately basic solutions of a flavanone from the mono-ionized *trans*-chalcone. The firmly established theory to account for the thermodynamics and kinetics of the flavylium based multistate of species in acidic medium was extended to the basic medium. The key experimental procedure to carry out this study is a sequence of reverse pH jumps from all pH range to a final pH sufficiently acid to have flavylium cation as the sole species. The reverse pH jumps can be performed from the equilibrium and pseudo-equilibrium. Acidification of the flavanone to pH=1 does not give back flavylium cation. In contrast, the di-ionized species *trans*-chalcone is obtained in a very fast process from the flavanone at pH>12. A cycle constituted by a sequence of pH jumps illustrates the concept of a timer at the molecular level with reset capacity.

The multistate based on 2'-hydroxyflavylium are related to a flavanone and permit to carry out a cycle that illustrates the concept of a timer at the molecular level.

¹ Sofia University, Faculty Chemistry & Pharmacy, Lab. Organ. Photochem., Sofia 1164, Bulgaria

² LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2828-516 Caparica, Portugal.

³ Sofia University, Faculty Chemistry & Pharmacy, Dept. Phys. Chem., Sofia 1164, Bulgaria

Download English Version:

https://daneshyari.com/en/article/6597961

Download Persian Version:

https://daneshyari.com/article/6597961

<u>Daneshyari.com</u>