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a b s t r a c t

The boundary layer flow and heat transfer analysis of electrically conducting viscous fluid over a nonlin-
early shrinking sheet is investigated. A similarity transformation is used to reduce the governing equations
to a set of nonlinear ordinary differential equations. The system of equations is solved numerically
employing an implicit finite difference scheme known as Keller-box method. It is found that dual solutions
exist for this particular problem. The numerical results for the velocity, temperature, wall skin friction
coefficient and local rate of heat transfer through the surface for various values of physical parameters
both in case of stretching and shrinking sheet are analyzed and discussed for both the solutions. Present
results in the hydrodynamic case (M = 0) are compared with existing numerical results in case of stretch-
ing flow and found in good agreement.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The flow and heat transfer analysis in the boundary layer on a
continuously moving or stretching surface has important applica-
tions in many manufacturing processes and polymer industry, for
examples, a continuous stretching of plastic films, artificial fibers,
metal spinning, metal extrusion, continuos casting, glass blowing
and many more. The pioneering work on the continuously stretch-
ing sheet was first initiated by Sakiadis [1]. The problem in [1] is
extended to discuss the various aspects of flow and heat transfer
characteristics by many researchers [2–10]. The linear velocity of
the surface is taken in all above problems. In 2001, Vajravelu
[11] studied the numerical solution of flow and heat transfer in a
viscous fluid over a nonlinearly stretching sheet. Later, Cortell
[12] discussed the viscous flow and heat transfer with constant
surface temperature (CST) and prescribed surface temperature
(PST) cases numerically. Recently, Abbas and Hayat [13] extended
the work of [12] by considering the electrically conducting fluid
and radiation effects in a porous medium and obtained purely ana-
lytic solution using homotopy analysis method (HAM). Very
recently, Bataller [14] discussed the similarity solutions for flow
and heat transfer of a quiescent fluid over a non-linearly stretching
sheet. He assumed a variable wall temperature and obtained a
numerical solution.

The problem in the reverse case i.e., very little is known about
the shrinking sheet where the velocity on the boundary is towards
the origin or a fixed point, and the unsteady shrinking film solution
was first investigated by Wang [15]. Again, Miklavcic and Wang
[16] studied the viscous hydrodynamic flow over a shrinking sheet
for both two-dimensional and axisymmetric flows. It is also noted
that the mass suction at the wall is required generally to maintain
(or smooth) the flow over a shrinking sheet. They discussed the
proof of existence and (non) uniqueness of both exact numerical
and closed form solutions. The analysis of [16] was also extended
in various directions for different fluids by many researchers
[17–22]. Recently, Fang [23] investigated the boundary layer flow
over a shrinking sheet with surface moving with power-law veloc-
ity. A theoretical analysis is carried out for different values of
power-index of the surface velocity using exact and numerical
solutions.

The aim of the present paper is two fold: first to incorporate the
effects of applied magnetic field for an electrically conducting fluid,
secondly to carry out the heat transfer analysis. The system of non-
linear coupled ordinary differential equations is solved numerically
using an implicit finite difference scheme known as Keller-box
method.

2. Mathematical formulation

Consider a two-dimensional flow of an incompressible viscous
fluid past a porous shrinking sheet at y = 0. The stretching/shrink-
ing velocity of the sheet is Uw(x) = �cxn, where � = 1, �1 is
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respectively for stretching and shrinking sheet and the wall mass
suction velocity is vw = vw(x). The x-axis is taken along the stretch-
ing/shrinking sheet and the y-axis perpendicular to it into the fluid.
The fluid is electrically conducting and the magnetic field B(x) is as-
sumed to be applied in the y-direction. The magnetic Reynolds
number is taken to be small so that the induced magnetic field
can be neglected. The temperature of the surface maintained at a
constant temperature Tw = T0 and far away from the sheet temper-
ature is T1, where Tw > T1. Under boundary layer approximation,
the continuity, momentum, and energy equations are
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where u and v are the velocity components in the x- and y-direc-
tions, respectively, q is the fluid density, l is the dynamic viscosity,
m is the kinematic viscosity, r is the electrical conductivity of the
fluid, T is the temperature, cp is the specific heat at constant pres-
sure and k is the thermal diffusivity. In Eq. (2), the external electric
field and the polarization effects are neglected and [24]

BðxÞ ¼ B0xðm�1Þ=2:

The boundary conditions for the problem are

u ¼ UwðxÞ ¼ �cxm; v ¼ vwðxÞT ¼ T0 at y ¼ 0; ð4Þ

u! 0; T ! T1 as y!1 ð5Þ
where m is a power index and c is a constant rate stretching/shrink-
ing which has a dimension of (time)�1.

We are interested in obtaining a similarity solution of the form
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and the wall mass transfer velocity becomes [23]
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Using Eq. (6), the continuity Eq. (1) is identically satisfied and Eqs.
(2) and (3) yield

f 000 þ ff 00 � bf 02 �M2f 0 ¼ 0; ð8Þ

h00 þ Prf h0 þ PrEcf 002 ¼ 0 ð9Þ
and the boundary conditions become

f ð0Þ ¼ s; f 0ð0Þ ¼ �; f 0ð1Þ ¼ 0; ð10Þ

hð0Þ ¼ 1; hð1Þ ¼ 0; ð11Þ

where s is the wall mass transfer at the sheet and

b ¼ 2m
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It is noted that in the special case when M = 0 and m = 1, the Eq. (8)
is reduced to the problem discussed by Miklavcic and Wang [16].
The problem discussed by Fang [23] can be retrieved when M = 0.

When m = 1, Eq. (8) takes the form

f 000 þ ff 00 � f 02 �M2f 0 ¼ 0: ð12Þ

The exact solution of the above equation can be written as
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where
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For s = 0 the solution of the MHD flow in the case of rigid plate was
discussed by Pavlov [26]. In that case a unique solution is obtained

for b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
. However for a porous plate dual exact solutions

also exist.
The shear stress at the wall is given by
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The above equation in dimensionless form becomes
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and the local rate of heat transfer of the surface is
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3. Results and discussion

The system of nonlinear ordinary differential Eqs. (8) and (9) with
boundary conditions (10) and (11) has been solved numerically
using an implicit finite difference scheme known as the Keller-box
method and described in the book by Cebeci and Bradshaw [25]. This
method is described in the following four steps:

(i) Given nonlinear system of boundary value problems
(8)–(11) is reduced to a first order system.

(ii) Obtained system of first order is reduced to system of alge-
braic equations by using central difference formula.

(iii) Linearize the resulting algebraic equation by using Newton’s
method and arrange then in matrix–vector form.

(iv) and then linear system of algebraic equations is solved by
using box-tridiagonal-elimination method.

It is worth mentioning here that the step size Dgand the bound-
ary layer thickness is chosen according to the values of parameters.
The iteration process is repeated until the accuracy up to 10�10 is
achieved.

The effects of various parameters for example, the power-index
m of the surface velocity, magnetic field or Hartman number M,
mass suction parameter s, and the Prandtl number Pr on the veloc-
ity f0(g), the shear stress at the wall f00(0), temperature field h and
the local rate of heat transfer at the surface or the local Nusselt
number �h0(0) are shown in Figs. 1–11. The numerical values of
the skin friction (or shear stress) at the wall f00(0) and the local rate
of heat transfer �h0(0) for different values of parameters of interest
are also tabulated in Tables 1–4.

In Fig. 1 the velocity f
0
(g) is plotted both for numerical (solid

line) and exact (filled circles) solutions in case of linear stretching
sheet with m = 1, M = 0.1 and s = 3.5 are fixed. Fig. 2 presents the
plots of f0(g) showing a comparison between numerical (solid line)
and exact (filled circles) solutions in case of linear shrinking sheet
for m = 1, M = 0.1 and s = 3.5. It is noted that dual solutions exist for
flow due to shrinking sheet in both the cases of numerical and
exact solutions for M = 0.1 and s = 3.5, and we call them as first
and second solution. From these two figures, it is further found that
both exact and numerical solution are identically same. Figs. 3 and
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