Accepted Manuscript

A concept for stimulated proton transfer in 1-(phenyldiazenyl)naphthalen-2-OLS

S. Hristova, V. Deneva, M. Pittelkow, A. Crochet, F.S. Kamounah, K.M. Fromm, P.E. Hansen, L. Antonov

PII: S0143-7208(18)30216-X

DOI: 10.1016/j.dyepig.2018.03.070

Reference: DYPI 6655

To appear in: Dyes and Pigments

Received Date: 29 January 2018

Revised Date: 7 March 2018
Accepted Date: 29 March 2018

Please cite this article as: Hristova S, Deneva V, Pittelkow M, Crochet A, Kamounah FS, Fromm KM, Hansen PE, Antonov L, A concept for stimulated proton transfer in 1-(phenyldiazenyl)naphthalen-2-OLS, *Dyes and Pigments* (2018), doi: 10.1016/j.dyepig.2018.03.070.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A CONCEPT FOR STIMULATED PROTON TRANSFER IN 1-(PHENYLDIAZENYL)NAPHTHALEN-2-OLS

S. Hristova^a, V. Deneva^a, M. Pittelkow^b, A. Crochet^c, F. S. Kamounah^b, K. M. Fromm^c, P. E. Hansen^d, L. Antonov^a

- ^a Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113 Sofia, Bulgaria
- ^b University of Copenhagen, Department of Chemistry, Universitetsparken 5, DK-2100 Copenhagen, Denmark
- ^c University of Fribourg, Department of Chemistry, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
- ^dRoskilde University, Department of Science and Environment, Roskilde, DK-4000, Denmark

Abstract:

A series of aryl azo derivatives of naphthols (1-3) were studied by means of UV-Vis and NMR spectroscopy in different solvents as well as by quantum chemical calculations and X-ray analysis. Previous studies have shown that Sudan 1 (1) exists as a tautomeric mixture. The effect of the solvents is minimized by the existing intramolecular hydrogen bond. Therefore, the influence on the tautomeric state in structurally modified 1 has been investigated. Structure 2 contains an additional OH-group, which deprotonates easily and affects the position of the tautomeric equilibrium by changing the electronic properties of the substituent. The implementation of a sidearm in 3 creates a condition for competition between the nitrogen from the azo group and from the piperidine unit for the tautomeric proton. In this case the use of acid as a stimulus for controlling the tautomeric process was achieved.

Keywords: tautomerism, molecular switches, molecular spectroscopy, azo dyes

Download English Version:

https://daneshyari.com/en/article/6598481

Download Persian Version:

https://daneshyari.com/article/6598481

<u>Daneshyari.com</u>