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a b s t r a c t

The present study numerically maximizes the heat transferred in a rectangular loop. The loop or circuit is
composed of two superimposed rectangles of different sizes with coolant filling the vacant space between
them. Buoyancy forces promote coolant motion, since a constant temperature difference is maintained
between the two outer vertical walls of the circuit. The results are presented in terms of two quantities:
the heat transfer rate per unit of length and per unit of coolant volume, for several values of the Rayleigh
number. The numerical solution is obtained by applying the finite elements method to the two-dimen-
sional numerical domain, here represented by the coolant only. The numerical results show that the rel-
ative size of the inner and outer rectangles composing the circuit are important in terms of thermal
performance and that the optimal gap size between the inner and outer rectangles decreases as the Ray-
leigh is increased. The circuit aspect ratio (i.e., height/width) was also investigated revealing to have a
positive effect on the overall thermal performance of the system if increased, while the eccentricity of
the two rectangles composing the circuit presented an opposite effect. The numerical results were com-
pared with scaling analysis showing good agreement.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection in idealized enclosed spaces has been a topic
of interest for many years, e.g., [1,2], attracting researchers who re-
lied on such configurations to provide fundamental insights in real
devices. Among the many configurations considered, possibly the
most common so far is the one where a square or rectangular
enclosure is differentially heated, e.g., [3,4]. Variations of this con-
figuration have also been addressed in several occasions [5–10].

Thermal energy transfer in enclosed spaces has been also investi-
gated while accounting for different heat transfer modes. Certainly,
the purely convective heat transfer approach is the most prolifically
found [1–4,11,12]. However, conjugated studies (i.e., conduction
coupled with convection) have also been extensively reported [13–
16]. Less often found is the study of fully coupled conduction, con-
vection and radiation processes in enclosed spaces [17–20].

A more recent trend of studies has heavily focused on the opti-
mization of numerous configurations, with constructal theory
being one of the most predominantly used methods [21,22]. While
the shape optimization of enclosed spaces (i.e., aspect ratio of dif-
ferentially heated enclosures) represents early attempts to im-
prove the performance of this configuration [2,23], recent studies
based on constructal theory have shown that the allocation of
heating and cooling within enclosed spaces can also significantly
affect its performance, e.g., [24].

Another configuration derived from self-driven enclosed flows
are the so-called closed circuits. These configurations can be seen
as a differentially heated cavity with an obstruction at the center,
which forces the flow to follow a narrow pathway between the
obstruction and the external walls of the enclosure composing
then a loop or circuit. The study of circuits has also interested
the research community over the years [25–32].

Furthermore, it is well known that flow patterns inside differen-
tially heated enclosures allow the appearance of large thermal and
velocity gradients [3,4,22]. As a consequence, part of the available
coolant, which here represents the heat carrier, is underutilized
[21,22,33]. In this context, the present paper studies the perfor-
mance of a differentially heated rectangular loop where its effi-
ciency is measured by the heat transfer density of the coolant
within [21,22] – this measure of efficiency has led to numerous
optimized configurations, as shown by constructal theory
[21,22,34–37]. The goal is to numerically maximize the amount
of thermal energy transferred across the loop per unit of fluid vol-
ume (i.e., ‘‘volumetric maximization”) [21,22], while accounting for
different geometric factors and flow strengths, here represented by
the Rayleigh number.

2. Foundations of the problem

Consider a two-dimensional enclosure of fixed area. Next, as-
sume that an area with impermeable walls is inserted into the
enclosure in a way that channels are created between each of the
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two parallel walls (i.e., loop; see Fig. 1). Finally, because the area of
the outer cavity is fixed (A = H � L), one can control the ‘amount’ of
coolant inside the loop by varying the dimensions of the inner area
(Ai = Hi � Li). Furthermore, assuming that the heated side of the
enclosure is maintained at Th and the cold wall at Tc (See Fig. 1),
the heat transferred across the loop per unit of fluid volume
[21,22] can be defined as

~q000 ¼ q000

kDT=A
¼

~q0

ð1� ~AiÞ
ð1Þ

where ~q0 ¼ q0=kDT ¼
R ~H

0 ð@~T=@~xÞd~y is the dimensionless heat flow
per unit length transferred from the heated wall to the fluid and
(1� ~Ai) is the dimensionless area of the coolant after inserting the
inner enclosure-all non-dimensional variables are defined in Eq.
(5). To foresee the existence of an optimum value of ~Ai, consider
the configuration where ~Ai ¼ 0. In this case and according to Eq.
(1), ~q000 is numerically equal to ~q0. Even though fluid can flow easily
in the cavity with no obstacle, a centrally located stagnant fluid
pocket that contributes poorly to heat transfer exists [21,22]. How-

ever, for the case where ~Ai > 0, the amount of coolant available is
reduced, which is potentially beneficial to ~q000 as shown in Eq. (1).

3. Numerical method

The numerical method relied on the finite element approach to
solve the conservation equations of mass, momentum and energy,
where the fluid was considered to be incompressible with constant
properties. The buoyancy term, responsible for the fluid motion,
was added through the Boussinesq approach in the vertical compo-
nent of the momentum equation. The conservation equations,
which were normalized using the same variables considered by
de Vahl Davis [3] and de Vahl Davis and Jones [4], are shown
below:

r � V
*
� ¼ 0 ð2Þ

1
Pr

V�
*

�ðrV�
*

Þ ¼ �rP� þ r2 V�
*

þRaT� j
*

ð3Þ

V�
*

�rT� ¼ r2T� ð4Þ

where V
*
� and T* are the dimensionless velocity vector and temper-

ature, respectively, and Pr ¼ m=a and Ra ¼ gbDTA3=2
=ma are the Pra-

ndtl and Rayleigh numbers. The vector j is the unit vector in the
direction of gravity (y-direction in Fig. 1). As shown in [3,4], the
scales for the variables of Eqs. (2)–(4) are:

x�; y� ¼ x; yffiffiffi
A
p ; V�

*

¼ V
*

a=
ffiffiffi
A
p ; T� ¼ T � Tc

Th � Tc
and P� ¼ P

qma=A
ð5Þ

Three types of boundary conditions were applied to the numerical
domain: (i) non-slip to all internal surfaces, (ii) isothermal bound-
aries, Th and Tc on the right and left walls of the outer enclosure,
respectively, and (iii) thermal insulation in all other walls.

The constitutive equations were solved with Comsol Multiphys-
ics� [38]. We used one of the solvers available in Comsol Multi-
physics� namely UMFPACK [39]. The convergence criteria for all
variables was set equal to 10–6.

4. Model validation

The validation of the numerical implementation relied on the
‘‘benchmark” solutions proposed by de Vahl Davis [3] and de Vahl
Davis and Jones [4]. These two articles provide detailed information

Nomenclature

A area [m2]
cp specific heat [J/kg K]
C constants
D channel breadth, Eq. (10) [m]
g gravity [m/s2]
H enclosure height [m]
k thermal conductivity [W/m K]
L enclosure length [m]
Nu Average Nusselt number
P pressure [Pa]
Pr Prandtl number
q0 heat transfer rate [W/m]
q0 0 0 heat transfer density [W/m3]
r center-to-center distance [m]
Ra Rayleigh number
S channel breadth [m]
T temperature [K]
x, y rectangular coordinates [m]

V
*

velocity vector [m/s]

Subscripts
c cold
h horizontal or hot
i internal
v vertical

Superscript
� dimensionless variables

Greek letters
a thermal diffusivity [m2/s]
b expansion coefficient [K�1]
k enclosure aspect ratio
m kinematic viscosity [m2/s]
q density [kg/m3]

Fig. 1. Numerical domain.
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