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a b s t r a c t

We consider a backward heat conduction problem (BHCP) in a slab, by subjecting to data at a final time,
and some different type boundary conditions at two ends of the slab. The BHCP is known to be highly ill-
posed. In order to numerically solve the BHCP we develop a new Lie-group shooting method (LGSM) in
the spatial direction. It can retrieve very well the initial data with a high order accuracy. Several numer-
ical examples of the BHCP demonstrate that the LGSM is applicable, even for those of strongly ill-posed
ones with a large value of final time. Under the noisy final data the LGSM is robust against the distur-
bance. The new method is applicable for a severely ill-posed case with a final data very small in the order
of 10�43, and the noise level is in the order of 10�1, of which the numerical solution still has an accuracy
in the order of 10�2. The results are rather significant in the computations of BHCP.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The problems that appear in engineering applications can be
categorized as direct problems and inverse problems. For the direct
problems which are governed by ordinary differential equations
(ODEs), Liu [1] has derived a Lie group transformation for the aug-
mented dynamics on the future cone, and developed group pre-
serving scheme (GPS) for an effective numerical calculation of
the nonlinear ODEs. Recently, the GPS is also proved to be very
effective to deal with the ODEs equipped with special structures,
as shown by Liu [2] for stiff equations, and by Liu [3] for ODEs with
multiple constraints.

Numerical schemes adopted for the backward problems are
usually implicit. The explicit ones that have been applied to solving
the backward problems are apparently not very effective up to
now. As mentioned by Mera [4], the backward problem is impossi-
ble to be solved by using the classical numerical methods and
requires special techniques.

In this paper we develop a new Lie-group shooting method
(LGSM) for the backward heat conduction problem (BHCP). It is
an extension of the works by Liu [5], Liu et al. [6] and Chang
et al. [7]. Chang et al. [8] have extended the new shooting method
in [7] to solve the multi-dimensional BHCPs. Recently, Liu [9–11]
and Yeih and Liu [12] have explored its superiority by using the
LGSM to estimate parameters in the parabolic type PDEs, as well
as to identify the heat source. The BHCP is one of the inverse prob-
lems for the applications in the heat conduction engineering to

recovering the past temperature history. The inverse problems
are those in which one would like to determine the causes for a de-
sired or observed effect. One of the characterizing properties of
many of the inverse problems is that they are usually ill-posed.
Mathematically speaking, the linear operator generated from the
BHCP is a compact one with infinite rank, whose inverse is discon-
tinuous, and thus, the solution that depends continuously on the
final data does not exist. The new LGSM would render a more com-
pendious numerical implementation than other schemes to solve
the BHCP. The degree of the ill-posedness of BHCP is over other in-
verse heat conduction problems, including the sideways heat con-
duction problem [13].

We consider the following BHCP:

@u
@t
¼ @

2u
@x2 ; 0 < t < T; 0 < x < ‘; ð1Þ

uð0; tÞ ¼ u0ðtÞ; uð‘; tÞ ¼ u‘ðtÞ; ð2Þ
uðx; TÞ ¼ uTðxÞ; ð3Þ

where uT(x) is a given final datum, and u2
0ðtÞ þ u2

‘ ðtÞ > 0. It means
that the boundary conditions cannot be both zero. After developing
the LGSM in Section 4, we also consider other possible boundary
conditions, given by

uð0; tÞ ¼ u0ðtÞ; vð‘; tÞ ¼ v ‘ðtÞ; ð4Þ
vð0; tÞ ¼ v0ðtÞ; uð‘; tÞ ¼ u‘ðtÞ; ð5Þ
vð0; tÞ ¼ v0ðtÞ; vð‘; tÞ ¼ v ‘ðtÞ; ð6Þ

where v = @u/@x and �v is the heat flux.
In order to calculate the BHCP, there appeared certain

progresses in this issue, including the boundary element method
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[14], the iterative boundary element method [15,16], the Tikhonov
regularization technique [17,18], the operator-splitting method
[19], the lattice-free high-order finite difference method [20], the
contraction group technique [5], the fundamental solution method
[4], the third order mixed-derivative regularization technique [21],
the Fourier regularization method [22], the three-spectral regular-
ization methods [23], and the regularization of Fredholm integral
equation method [24]. The method developed by Liu [5] was fur-
ther developed by Xiong et al. [25], of which the stepsize used in
the spatial finite difference is deemed as a regularization parame-
ter. Chiwiacowsky and de Campos Velho [26] have given a review
of the numerical solutions of the BHCP.

Clark and Oppenheimer [27] and Ames et al. [28] have used a
quasi-reversibility method to approximate the BHCP. The numeri-
cal implementation of the quasi-reversibility together with a time-
direction Lie-group shooting method has been carried out by
Chang et al. [7] to calculate the BHCP with a high performance.

However, when the final data are almost diminished and are
polluted by a large noise, all the above methods may fail to recover
the initial data. In this paper we will extend the Lie-group shooting
method, which is used for the boundary value problems as origi-
nally designed by Liu [29–31] for the direct problems, to the BHCP
by considering a spatial-direction Lie-group shooting technique for
matching the boundary conditions. It is interesting to note that the
new method does not require any a priori regularization. It also
exhibits two advantages than other methods that the new method

is insensitive to the final data and is insensitive to the noise distur-
bance. It means that the present method can be applied to retrieve
the initial data for a long history of BHCP with a large time span.
Through our study in this paper, it would be clear that the new
method can greatly reduce the computational time and is easy to
a numerical implementation for the calculation of BHCP.

2. Solution procedures

When the BHCP is considered in a spatial interval of 0 < x < ‘ by
subjecting to the boundary conditions at two ends of a slab and an
available measured datum at a final time, we will solve it through
two steps. In the first step we will develop a new shooting method,
namely the Lie-group shooting method (LGSM), extending the
works by Liu [29–31] from a two-dimensional shooting technique
to a 2n-dimensional shooting technique. Then, after searching the
missing left-side boundary condition at x = 0 we applied the fourth
order Runge–Kutta method (RK4) or the GPS to calculate the tem-
perature distribution inside the slab in the whole past histories,
including the initial one of u(x,0).

We transform Eq. (1) into the following equations:

@uðx; tÞ
@x

¼ vðx; tÞ; ð7Þ

@vðx; tÞ
@x

¼ @uðx; tÞ
@t

: ð8Þ

Nomenclature

A augmented matrix
a, b coefficients defined in Eqs. (28), (31), (37), (49)
f 2n-dimensional vector field in Eq. (14)
f̂ :¼ fðx̂; ŷÞ
F :¼ f̂=kŷk
F1 the first n components of F
F2 the last n components of F
F(x, t) transform function defined in Eq. (72)
g 2n + 1-dimensional Minkowski metric
G an element of Lorentz group
Gi, i = 1, . . . ,K elements of Lorentz group
G(r) an element of Lorentz group
G(y0,y‘) an element of Lorentz group
G0

0 the 00th component of G
h right-hand side of Eq. (10)
ĥ :¼ hðr‘; ûÞ
h :¼ ‘/K
I2n 2n-dimensional unit matrix
‘ length of slab
k�k Euclidean norm
M2nþ1 2n + 1-dimensional Minkowski space
n number of discretized time points
r weighting factor
R real numbers
R(i) random numbers
s level of noise
SOo(2n,1) 2n + 1-dimensional Lorentz group
so(2n,1) the Lie algebra of SOo(2n,1)
S :¼ ‘ky‘ � y0k
t time
T final time
ti :¼ (i � 1)Dt
Dt time stepsize
u(x, t) temperature
uT(x) final time temperature function
u0(t) left-boundary temperature function
u‘(t) right-boundary temperature function

ui(x) :¼ u(x, ti)
u temperature vector of ui

u‘ temperature vector at x = ‘
u0 temperature vector at x = 0
û :¼ ru0 + (1 � r)u‘

U(x, t) defined in Eq. (72)
v(x, t) heat flux
v0(t) left-boundary heat flux
v‘(t) right-boundary heat flux
vi(x) :¼ v(x, ti)
v heat flux vector of vi

v‘ heat flux vector at x = ‘
v0 heat flux vector at x = 0
v̂ :¼ rv0 + (1 � r)v‘

x space variable
Dx mesh size of x
x̂ :¼ r‘
X 2n-dimensional augmented vector
Xk numerical value of X at the kth spatial step
X0 the value of X at x = 0
X‘ the value of X at x = ‘
y 2n-dimensional vector defined in Eq. (14)
y0 the value of y at x = 0
y‘ the value of y at x = ‘
ŷ :¼ ry0 + (1 � r)y‘

Z :¼ exp(S/g)

Greek symbols
� convergence criterion
g coefficient defined in Eqs. (34) and (46)
h intersection angle of y‘ � y0 and y0

Subscripts and superscripts
i index
K index
t transpose

C.-S. Liu / International Journal of Heat and Mass Transfer 53 (2010) 4132–4140 4133



Download	English	Version:

https://daneshyari.com/en/article/659884

Download	Persian	Version:

https://daneshyari.com/article/659884

Daneshyari.com

https://daneshyari.com/en/article/659884
https://daneshyari.com/article/659884
https://daneshyari.com/

