Accepted Manuscript

Hydrothermally synthesized fluorescent Zn₂SnO₄ nanoparticles for dye sensitized solar cells

Partha Pratim Das, Anurag Roy, Shruti Agarkar, Parukuttyamma Sujatha Devi

PII: S0143-7208(17)32049-1

DOI: 10.1016/j.dyepig.2017.12.066

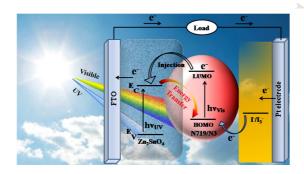
Reference: DYPI 6472

To appear in: Dyes and Pigments

Received Date: 29 September 2017 Revised Date: 18 December 2017 Accepted Date: 30 December 2017

Please cite this article as: Das PP, Roy A, Agarkar S, Devi PS, Hydrothermally synthesized fluorescent Zn₂SnO₄ nanoparticles for dye sensitized solar cells, *Dyes and Pigments* (2018), doi: 10.1016/j.dyepig.2017.12.066.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



ACCEPTED MANUSCRIPT

$\label{eq:continuous_synthesized} \begin{tabular}{ll} Hydrothermally Synthesized Fluorescent Zn_2SnO_4 Nanoparticles for Dye Sensitized Solar Cells \end{tabular}$

Partha Pratim Das, Anurag Roy, Shruti Agarkar, and Parukuttyamma Sujatha Devi*

Graphical Abstract

Hydrothermally synthesized Zn_2SnO_4 nanoparticles possessing UV emission exhibited resonance energy transfer with N719 and exhibited an improved DSSC efficiency of 2.56%.

Download English Version:

https://daneshyari.com/en/article/6598850

Download Persian Version:

https://daneshyari.com/article/6598850

<u>Daneshyari.com</u>