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A B S T R A C T

A hologram quantitative structure–activity relationship (HQSAR) and topomer comparative molecular-field
analysis (CoMFA) were performed on 51 molecules that belong to the azo dyes to determine their affinities to
cellulose fiber. The best HQSAR model was obtained by using atoms. Hydrogen atoms as a fragment distinction
and a fragment size of 3–6 showed a leave-one-out cross-validated correlation coefficient (q2LOO) of 0.849 and a
non-cross-validated correlation coefficient (r2) of 0.927. The best topomer CoMFA model with steric and elec-
trostatic field parameters based on three fragments gave satisfactory results (q2LOO=0.821; r2= 0.934). External
predictions were made on a test set and compared with previously reported models. Topomer CoMFA steric,
electrostatic, and HQSAR atomic contribution maps were generated to analyze the structural features of this data
set that govern their affinity potency.

1. Introduction

The dye industry produces thousands of dyes, which represent an
abundant class of colored organic compounds. Affinity is one of the
major properties of dyes. Theoretical studies on the mechanism of dye
adsorption have been carried out by different modern methods, but
there is no single interpretation of dyeing theory [1]. The field of
quantitative structure–activity relationships (QSAR) constitutes an im-
portant tool to study dye–fiber interactions [2]. The advantages of this
approach to dye adsorption on cellulose fiber are related either to a
description of the mechanisms at a molecular level or to the predict-
ability of the proposed models, which can lead to the design of new
dyes with higher affinities for cellulose fiber.

Azo compounds have vivid colors, comprise approximately two-
thirds of all synthetic dyes, and are the most widely used and structu-
rally diverse class of commercial organic dyes [3]. Therefore, the study
of dye-fiber affinity is important. In recent years, some QSAR models
have been developed to correlate azo dye affinity with the dye mole-
cular structure. Funar–Timofei and Schüürmann [4] reported QSAR
models for a series of 30 anionic azo dyes by comparative molecular-
field analysis (CoMFA) combined with a semiempirical quantum che-
mical AM1 calculation. Later, they investigated the 30 dyes again [5]

by using CoMFA and solution-phase molecular descriptors. The same
30-anionic-azo-dye dataset was studied by Polanski et al. [6] by using
comparative molecular surface analysis, by Zhokhova et al. [7] by using
multiple linear regression (MLR) based on fragment descriptors that
were calculated by using the NASAWIN software package, and by Bak
and Polanski [8] by using the receptor-independent four dimensional
(4D)-QSAR method that is based on a self-organizing mapping ap-
proach. The affinities of 21 heterocyclic monoazo dyes were modeled
by Funar–Timofe et al. [9] by using MLR, CoMFA, and a comparative
molecular similarity index analysis, and by Bak et al. [10] by using
receptor-dependent 4D-QSAR methods. More recently, Wang et al. [11]
combined 30 anionic azo dye datasets and 21 heterocyclic monoazo dye
datasets to develop MLR and artificial neural network (ANN) models
based on descriptors that were calculated by using Dragon software.
Although the MLR and ANN models that were reported by Wang et al.
[11] provided a good fit, and were based on more azo dye molecules
than previous reports, the information that was encoded in the de-
scriptors that were included in the MLR and ANN models could not
provide intuitive graphical results to guide the design of the new azo
dyes. Therefore, the establishment of simple, repeatable, and intuitive
models for azo dyes is important.

Holographic QSAR (HQSAR) is an extraordinary QSAR technique
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[12–14]. In this method, an extended form molecular hologram is used
as a molecular descriptor to fingerprint encode all possible molecular
fragments, including linear, branched, cyclic, and overlapping mole-
cular features. HQSAR avoids the need for a three-dimensional (3D)
structure, putative binding conformations, and molecular alignment in
CoMFA, and also averts the selection and calculation or measurement of
the physicochemical descriptors that are required by classical QSAR
[15,16]. Topomer CoMFA is a second-generation CoMFA method. An
obvious advantage of topomer CoMFA compared with traditional
CoMFA is that topomer CoMFA models can be generated by splitting the
molecules into R-groups, aligning each fragment, and calculating the
steric and electrostatic field descriptor values automatically. A topomer
CoMFA prediction is almost entirely objective, and depends only on the
two-dimensional (2D) connectivity: user-specified fragmentations, and
measured activities of the training set structures [17–19]. Both methods
can provide intuitive graphical results. Therefore, HQSAR and topomer
CoMFA were used in this study because of the aforementioned ad-
vantages.

This work aims to identify the stereo-electronic requirements of azo
dyes for an increased affinity to cellulose fiber. HQSAR and topomer
CoMFA analysis were performed on the previously reported 51 azo dyes
to reveal the structural factors that govern their affinity. The statistical
parameters of the HQSAR and topomer CoMFA models were compared
with previously reported models. Finally, the obtained results from the
HQSAR and topomer CoMFA were used as a guide to design new azo
dyes.

2. Materials and methods

2.1. Data set

Fifty-one azo dyes were collected from literature [11]. The com-
pounds and their corresponding experimental dye affinity values are
listed in Table 1. The entire data set was divided into training and test
sets by the DUPLEX algorithm [20], and the distribution of training and
test sets was identical to that in literature [11] to facilitate a compar-
ison of results. The data set of 51 dyes was divided into training (41
dyes) and test (10 dyes) sets. The structures of the 51 dyes, and the
affinity values and distributions of the training and test sets are pro-
vided in Table 1. For the topomer CoMFA study, the 3D structures of the
51 azo dyes were constructed using Sybyl-x 2.0 software. Each molecule
energy in the data set was minimized through the gradient-descent
method and by using a Tripos force field and Gasteiger–Huckel charges.

2.2. HQSAR

In general, HQSAR analysis includes three main steps: (1) gen-
erating sub-structural fragments for each molecule in the data set, (2)
encoding these fragments in holograms, and (3) correlating the latter
with the available property value. In HQSAR, the input molecule is
broken into a series of unique structural fragments (linear, branched,
and overlapping). The information that is contained in each fragment is
defined by six fragment distinction parameters, as follows: the atomic
number (A), the bond type (B), the atomic connection (C), hydrogen
(H), chirality (Ch), and donor/acceptor (D). Each fragment is assigned a
specific integer from 0 to 231 via a cyclic redundancy check algorithm.
Every integer corresponds to a bin in an integer array of fixed-length
hologram length (which is usually one of the 12 prime numbers that
range from 53 to 401), in which all elements are set to zero initially. Bin
occupancies are the descriptors of HQSAR modeling [12], and the
partial least square (PLS) method was used to develop the QSAR model.
HQSAR models can be displayed graphically as color-coded structure
diagrams, in which the color of each atom reflects its contribution to
potency variation. The red and green ends of the spectrum reflect the
negative and positive contributions, respectively. Atoms with inter-
mediate contributions are colored white [21]. HQSAR modeling was

performed with Sybyl-x 2.0 software.

2.3. Topomer CoMFA

The topomer CoMFA methodology combines CoMFA with topomer
technology to overcome the alignment problem of CoMFA. A topomer is
a molecular fragment, which is prescribed by its conformation and its
position [22], and indicates any structure that contains at least one
open valence. Similar to CoMFA, the steric field and electrostatic field
were calculated using the standard Tripos force field method and sp3
carbon probe atom with a +1 charge. Topomer CoMFA models are
built using PLS, and steric and electrostatic descriptors were used as
independent variables. The optimum number of latent variables (LVs) is
evaluated by leave-one-out (LOO) cross–validation. Finally, the field
contour maps are generated by using the StDev*Coeff field type.

2.4. Model evaluation

The goodness of fit and prediction were used to evaluate the model
performance. The goodness of fit was examined by the coefficient of
determination (r2), non-cross validated standard error (SEE), and
Fisher's test (F) value. Cross-validation (CV) is the most commonly used
technique for internal validation. The outcome from the CV procedure
is cross-validated r2 (q2), which is used as a criterion of robustness and
predictive ability of the model. The optimum numbers of LVs of models
were determined by the highest LOO q2 (q2LOO). Compared with the LOO
procedure, the leave-many-out (LMO) CV allows more chemicals to be
omitted as a prediction to test the model's stability. Thus, the cross-
validated r2 (q2LMO) of LMO CV accounts for more model extrapolation
than q2LOO [12,23]. The selection of good predictive models depends on
q2LMO. In this study, LMO CV was performed by using five groups, and
the procedure was repeated 10 times. The mean of 10 readings was
q2LMO-5. The goodness of the model prediction depends on the challen-
ging test set prediction that is reflected by its predictive r2. Several
external validation parameters (QF1

2 , QF2
2 , QF3

2 and the concordance
correlation coefficient (CCC)) were proposed in literature [24] for the
external validation of QSAR models were employed in the HQSAR and
topomer CoMFA analyses.
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where, yi is the experimental data values, ŷi is the predicted value, yTR is
the mean value in the training set, the symbol TR and EXT are used for
training and test sets, respectively, y is the average of the experimental
data values, ŷ is the average of the predicted data values, n is the
number of compounds.

3. Results and discussion

3.1. HQSAR analysis

Several parameters related to hologram generation, such as frag-
ment size, and fragment distinction, affect the HQSAR model quality.
To derive the best HQSAR model, the influence of various combinations
of parameters on the HQSAR model was studied. First, HQSAR analysis
was conducted using default parameters, including the six default prime
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