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a b s t r a c t

This work deals with a closed-loop thermal control problem using a low order model built from exper-
imental data. A metallic plate is heated on one side by a radiative heat source and cooled on the other
side by a rack of fans. The heat source is able to move in both directions along the plate. Starting from
a steady state corresponding to a nominal configuration of heat power, source position and ventilation
level, the objective is to control temperature at 3 chosen points on the rear side when the nominal ven-
tilation level is perturbed. The actuators are the heat source power and its displacements. The originality
of this work is threefold: (i) a low order model allows performing state feedback control in real time
(Dt = 2 s) through a Linear Quadratic Gaussian compensator, (ii) the model is identified from experimen-
tal data using the Modal Identification Method and (iii) a single heat source with 3 degrees of freedom is
used to control temperature at 3 distinct positions. Both thermal regulation and tracking problems have
been addressed. The effect of the control time period and the control parameters, have also been inves-
tigated. Results show promising future developments involving more actuators and controlled outputs.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Today, the process control is common in everyday life, in the
industrial domain as well as in the domestic one. Numerous con-
trol applications are being made in many domains: fluid dynamics,
chemistry, biology, power systems, robotics, economics. . .

The process control field has fascinated many engineers and
researchers for many centuries. The scientific literature in this field
is rich, hence proposing an exhaustive classification of the methods
developed in this domain seems to be difficult.

Our interest in this work is the thermal control of multi-input
multi-output (MIMO) systems. Let us outline the main techniques
suitable for such an application.

One of the most common techniques is the proportional integral
derivative (PID) controller. It minimizes an error between a mea-
sured process variable and a desired setpoint by adjusting the pro-
cess inputs. Methekar et al. [1] studied a control strategy to obtain
maximum power density from a fuel cell. An analysis of the steady-
state relative gain array (RGA) was carried out in order to select
suitable process variables for controlling average power density
and average solid temperature. Linear PI controllers with fixed gain
were implemented in a cascade loop. Furthermore, a ratio control

strategy was introduced in order to couple two inlet manipulated
variables, which led to a quicker time response of the process con-
trol. A simple and practical cascade control strategy was also pro-
posed by Sheng et al. [2] for a molten carbonate fuel cell system.
In this numerical application, two temperature variables had to
be controlled by three manipulated variables. A master controller
and two PID controllers were implemented through a cascade con-
trol scheme and satisfactorily brought the temperatures back to
their desired setpoints. Hamane et al. [3] used a MIMO linear ther-
mal model and the decoupling PID control strategy. The control
objective was to maintain three setpoint errors within ±1 �C by
adjusting three manipulated variables. A model identification was
performed on the experimental device in an open loop step
response experiment for each manipulated variable. This procedure
allowed to infer the parameters of each PID controller, without
using the trial-and-error tuning.

More recent and sophisticated methodologies consist in using a
model-based controller in order to optimize the system
performance. Many approaches exist. Let us first cite the model
predictive control (MPC). Colclasure et al. [4] and Sanandaji et al.
[5] presented this approach combined to a low order model for
solid-oxide fuel cell systems. In this study, three actuation
commands had to be calculated to guide the system through three
desired output trajectories. Due to the slow thermal characteristic
times of the temperature regulation compared to the other
measured variables, a PID controller was used for this decoupled
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SISO system. For the remaining both actuators, an MPC controller
was implemented using a low order model that captured the dom-
inant dynamic behavior of the system over the operating range.
The system being strongly nonlinear, a linear parameter varying
(LPV) structure was used to include nonlinear scheduling functions
that blended the dynamics of locally linear models. This low order
model, coupled to the Kálmán filter appeared to be suitable for
real-time process control.

Secondly, let us mention the artificial neural networks, which
have been widely used in control of many practical industrial non-
linear processes. Dinh and Afzulpurkar [6] used an artificial neural
network in order to accurately reproduce the behavior of the non-
linear MIMO process of a roller kiln. The neural network is suitable
for nonlinear input–output relationships. Hence, the use of neural
networks in the place of linear models in model-based controller
extends the working domain of the controller. In [6], the feed-for-
ward neural network was implemented through a feedback control
diagram and simulation results showed that the neural network
controller was reliable in the studied case. Another application
using this approach was presented by Scott and Ray [7]. The aim
was to control the temperature and the concentration in a highly
nonlinear nonisothermal continuous-stirred tank reactor. Different
controllers were compared in this study and the neural network
one showed better robustness properties with respect to distur-
bance rejection.

Thirdly, let us cite a few methods relative to low order models
(LOMs). Indeed, simpler reduced order models, that capture the
dominant time-scale behavior, are needed for control implementa-
tion. Zheng and Hoo [8] proposed a novel system identification
method for implementable control solutions. The singular value
decomposition and the Karhunen–Loève expansion were com-
bined in order to build the low order model. This last one was then
successively used in a state feedback loop with the aim of control-

ling five temperature variables by adjusting three manipulated
variables (cooling/heating zones). The same authors provided the
theoretical framework to show that their low order model could
be implemented in a model-based controller guaranteeing stability
of the closed-loop system [9].

Favennec et al. [10] studied a purely numerical temperature reg-
ulation problem with a state feedback approach. The objective was
to control a temperature profile close to the outlet of a pipe by
adjusting two heat fluxes, whatever the disturbance of the inlet
temperature. Laminar 2D convective heat transfer was considered.
The control was based on a reduced model of the linear unsteady en-
ergy equation for a fixed steady velocity field. This low order model
was built through the modal identification method. Numerical re-
sults showed that the controller was able to reject the disturbance.

Our paper deals with experimental thermal closed-loop control
problems: temperature regulation and tracking. A metallic plate is
heated on one side by a radiative heat source and cooled on the
other side by a rack of fans. The heat source is able to move in both
directions along the plate. This problem thus involves several non-
linearities. From a steady state corresponding to a nominal config-
uration of heat power, source position and ventilation level, the
objective is to control temperature at three chosen points on the
rear side when disturbances in the ventilation level occur. The
actuators are the source heat power and its displacements. The
originality of this work lies in the fact that, firstly a low order mod-
el, linking up the temperatures to the independent inputs, allows
us to perform the state feedback control in real time; secondly this
model is directly identified from experimental data with the Modal
Identification Method (MIM) [11–15]; and thirdly, only one actua-
tor with its three degrees of freedom is used to control three tem-
peratures. In addition, a study of the influence of control
parameters on control results has been addressed, as well as the
influence of the time step.

Nomenclature

A state matrix
B global input matrix
Bc input matrix for commands
Bp input matrix for perturbation
C global output matrix
Cp specific heat, J � kg�1 � K�1

h convective exchange coefficient, W �m�2 � K�1

J objective functional of control problem
J ðnÞid objective functional of LOM identification
k thermal conductivity, W �m�1 � K�1

Kr gain matrix of LQR
Ke gain matrix of LQE
‘ parameter used to limit the command magnitude
n LOM order i.e. size of vector dX
p dimension of global input vector
q dimension of global output vector
t time, s
Dt time step, s
T temperature, K
dT temperature deviation, K
dP power variation in heating wire, W
dU global input vector [dP dxs dys dV]T

dUc command vector [dP dxs dys]T

dV ventilation voltage disturbance, V
dX state vectorcdX estimate of dX
dxs source displacement in x direction, mm
dys source displacement in y direction, mm
dY global output vector

dZ output vector for controlled points
dZd desired temperature deviation vector
wm temperature measurement noise, K

Greek symbols
a ratio between standard deviations of measurement and

perturbation noises
e emissivity
q density, kg �m�3

rid;ðnÞ
Y mean quadratic discrepancy corresponding to J ðnÞid , K

rZ mean quadratic discrepancy between desired and
obtained temperatures, K

Subscripts
nom nominal configuration
z relative to controlled points

Superscripts
d desired (for output tracking problem)
m measured
T transposition sign

Abbreviations
LOM Low Order Model
LQE Linear Quadratic Estimator
LQG Linear Quadratic Gaussian compensator
LQR Linear Quadratic Regulator
MIM Modal Identification Method
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