Contents lists available at ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

Emission enhancement of LiLaMo $_2O_8$:Eu $^{3+}$ phosphor by co-doping with Bi $^{3+}$ and Sm $^{3+}$ ions

Renping Cao^{a,*}, Changlin Liao^a, Fen Xiao^b, Guotai Zheng^a, Wen Hu^a, Yimin Guo^a, Yuanxiu Ye^a

^a College of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China

^b College of Mechanical Manufacture and Automation, Jinggangshan University, Ji'an 343009, China

ARTICLE INFO	ABSTRACT
Keywords: Double molybdates Phosphors Energy transfer Red-emitting	A series of LiLaMo ₂ O ₈ :Eu ³⁺ , R (R = Bi ³⁺ and Sm ³⁺) phosphors are synthesized by a high temperature solid- state reaction method in air. The crystal structures, fluorescence lifetimes, and luminescence properties are investigated in detail. LiLaMo ₂ O ₈ :Eu ³⁺ phosphor with excitation 395 nm shows red light in the range of 525–725 nm and it photoluminescence intensity may be enhanced ~2.35 times due to energy transfer (ET) from a sensitizing species (Bi ³⁺ or Sm ³⁺) to Eu ³⁺ ion after Bi ³⁺ or Sm ³⁺ ion is co-doped. The optimal Eu ³⁺ , Bi ³⁺ , and Sm ³⁺ ion concentrations are 4%. Luminous mechanism of LiLaMo ₂ O ₈ :Eu ³⁺ , R (R = Bi ³⁺ and Sm ³⁺) phosphors and ET processes between Eu ³⁺ and Bi ³⁺ /Sm ³⁺ ions are analyzed and explained by their excitation and emission spectra and energy level diagrams of Eu ³⁺ , Bi ³⁺ , and Sm ³⁺ ions. The experimental results indicate that LiLaMo ₂ O ₈ :Eu ³⁺ , R (R = Bi ³⁺ and Sm ³⁺) phosphors may be used as potenial red emitting materials for white light emitting diodes (LEDs) based on either a near ultraviolet (~ 395 nm) or blue (~ 465 nm) chip.

1. Introduction

The double molybdates with formula $MRe(MoO_4)_2$ (M = alkali metal and Re = trivalent rare earth ions) belong to the family of double molybdate compounds and have attracted a tremendous amount of attention because of the excellent thermal and chemical stabilities and the good absorption and emission cross-sections of rare earth ions in their lattices [1-3]. MRe(MoO₄)₂ is considered to be efficient luminescent host and rare earth ion doped. MRe(MoO₄)₂ phosphors have been reported widely due to their potential applications in solid-state lighting and lasers, such as $Ca_{0.5}Y_{1-x}(MoO_4)_2:xRE^{3+}$ (RE = Pr, Sm, Eu, Igning and lasers, such as $Ca_{0.511-x}(MOO_{4/2}; Atternotic (He = P1, Sin, Ed., Tb, Dy), NaGd(MoO_4)_2: Eu^{3+}, Tb^{3+}, Li_xAg_{1-x}Yb_{0.99}(MoO_4)_2: 0.01 Er^{3+}, NaLa(MoO_4)_2: RE^{3+} (RE^{3+} = Eu^{3+}, Sm^{3+}, Er^{3+}/Yb^{3+}), AgLa (MoO_4)_2: Yb^{3+}, Er^{3+}, KLa(MoO_4)_2: Dy^{3+}, Eu^{3+}, CaGd_2(MoO_4)_4: Eu^{3+}, NaLu(MoO_4)_2: Nd^{3+}, KGd(MoO_4)_2: Sm^{3+}, and AgTb(WO_4)_2: Ce^{3+}$ [4-13]. LiLa(MoO₄)₂ as one of the double molybdates with structure similar to the scheelite CaWO₄ has a number of attractive peculiar features due to the low symmetry of the crystal lattice [14]. In LiLa $(MoO_4)_2$ crystal lattice, Mo^{6+} ion is coordinated by four O^{2-} ions in a tetrahedral symmetry, Li⁺ and La³⁺ cations are randomly distributed over the same sites, which are coordinated by eight O^{2-} ions from near four MoO_4^{2-} [15,16]. The random distribution of La^{3+} is helpful for the inhomogeneous broadening of optical spectra when rare earth ions are doped into the crystal lattice and replace the positions of La^{3+} ions.

At present, rare earth ion doped LiLa(MoO₄)₂ phosphors have also been reported widely, such as LiLa(MoO₄)₂:Yb³⁺, LiLa(MoO₄)₂:Tm³⁺, LiLa (MoO₄)₂:Tm³⁺, LiLa (MoO₄)₂:Eu³⁺, LiLa (MoO₄)₂:Dy³⁺, and LiLa(MoO₄)₂:Nd³⁺ [17–23]. However, their luminescence properties need to be further improved. It is well known that the energy transfer (ET) is one of important methods for the improvement of the luminescence properties of phosphors. In order to gian the practical application of rare earth ions doped LiLa(MoO₄)₂ phosphors, we study their luminescence properties improvements by ET process between different ions.

Bi³⁺ ion with the [Xe]4f¹⁴5d¹⁰6s² electronic configuration can show emission in the region from near ultraviolet (UV) to yellow light [24]. The improvement of rare earth ion luminescent properties has been investigated and reported extensively by ET between Bi³⁺ and rare earth ions, such as SrSb₂O₆:Eu³⁺, Bi³⁺, CaZrO₃:Sm³⁺, Bi³⁺, and Ca₂MgWO₆:Sm³⁺, Bi³⁺ [25–27]. Besides, ET between rare earth ions can also improve the luminecence properties of phosphors and has been studied by many researchers, such as GdNbTiO₆:Eu³⁺/Dy³⁺, SrMoO₄:Sm³⁺, Tb³⁺, Na⁺, LaAl₁₁O₁₈:Eu, Tb, CaGd₂(WO₄)₄:Eu³⁺, Sm³⁺, Ca₁₉Ce(PO₄)₁₄:A (A = Eu³⁺/Tb³⁺/Mn²⁺), SrZn₂(PO₄)₂:Eu³⁺, Tb³⁺, Li⁺, NaLa(MoO₄)₂:Sm³⁺/Dy³⁺, and Ba₃La(PO₄)₃:Tb³⁺, Sm³⁺ [28–35].

According to the above investigations and motivated by the attempt to develop efficient red-emitting phosphors for the application of white

E-mail address: jxcrp@163.com (R. Cao).

https://doi.org/10.1016/j.dyepig.2017.11.023

Received 7 October 2017; Received in revised form 28 October 2017; Accepted 11 November 2017 Available online 13 November 2017 0143-7208/ © 2017 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

Fig. 1. Unit cell representation of the $\rm LiLaMo_2O_8$ crystal structure drawn based on ICSD #4185.

Fig. 2. XRD patterns of JCPDS [No. 18–734 (LiLaMo₂O₈)], undoped LiLaMo₂O₈, LiLaMo₂O₈:4%Eu³⁺, LiLaMo₂O₈:4%Eu³⁺, 4%Bi³⁺, and LiLaMo₂O₈:4%Eu³⁺, 4%Sm³⁺ phosphors at room temperature.

light emitting diodes (LEDs) based on either a near UV or a blue chip, we synthesized a series of LiLaMo₂O₈:Eu³⁺, R (R = Bi³⁺ and Sm³⁺) phosphors by high-temperature solid-state reaction method in air. We investigated their crystal structures and luminescence properties. The influence of Eu³⁺, Bi³⁺, and Sm³⁺ ions on the luminescence properties of phosphors is discussed. Luminous mechanism of LiLaMo₂O₈:Eu³⁺, R (R = Bi³⁺ and Sm³⁺) phosphors and ET processes between Eu³⁺ and Bi³⁺/Sm³⁺ ions are analyzed and explained by their spectra and energy level diagrams of Eu³⁺, Bi³⁺, and Sm³⁺ ions.

Fig. 4. (a) PLE and (b) PL spectra of LiLa_(1-x)Mo₂O₈:xEu³⁺ (1 \leq x \leq 6 mol%) phosphors at room temperature ($\lambda_{ex} = 395$ nm and $\lambda_{em} = 616$ nm). The insets: The influences of Eu³⁺ concentration to PLE and PL intensities.

2. Experimental section

2.1. Raw materials and sample synthesis

Here, pure chemicals Li_2CO_3 (99.9%), MoO_3 (99.9%), Bi_2O_3 (99.95%), Eu_2O_3 (99.99%), Sm_2O_3 (99.99%), and La_2O_3 (99.99%) are directly used as raw materials without further purification, which are purchased from the Aladdin Chemical Reagent Company in Shanghai, China.

In this work, a series of $LiLa_{(1-x)}Mo_2O_8:xEu^{3+}$ (x = 0, 1, 2, 3, 4, 5, and 6 mol%), $LiLa_{(0.96\cdot y)}Mo_2O_8:4\%Eu^{3+}$, yBi^{3+} (y = 1, 2, 3, 4, 5, and

Fig. 3. PLE and PL spectra of (a) LiLaMo₂O₈:4%Eu³⁺ (λ_{ex} = 395 nm and λ_{em} = 616 nm), (b) LiLaMo₂O₈:4%Eu³⁺, 4% Bi³⁺ (λ_{ex} = 395 nm and λ_{em} = 616 nm), (c) LiLaMo₂O₈:4%Eu³⁺, (λ_{ex} = 404 nm and λ_{em} = 644 nm), and (d) LiLaMo₂O₈:4%Eu³⁺, 4%Sm³⁺ (λ_{ex} = 395 nm and λ_{em} = 616 nm) phosphors at room temperature and the corresponding CIE chromaticity diagram and chromaticity coordinates. The inset: The pictures of samples under 254 nm UV lamp.

Download English Version:

https://daneshyari.com/en/article/6599544

Download Persian Version:

https://daneshyari.com/article/6599544

Daneshyari.com