
Estimation of front surface temperature and heat flux of a locally heated plate
from distributed sensor data on the back surface

Z.C. Feng a,⇑, J.K. Chen a, Yuwen Zhang a, James L. Griggs Jr. b

a Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
b Science Applications International Corporation, 6200 Uptown Blvd. NE, Albuquerque, NM 87110, USA

a r t i c l e i n f o

Article history:
Received 29 September 2010
Received in revised form 22 February 2011
Accepted 22 February 2011
Available online 13 April 2011

Keywords:
Inverse problem
Transfer function
Sensor compensation
Temperature measurement

a b s t r a c t

We present a new method of solving the three-dimensional inverse heat conduction (3D IHC) problem
with the special geometry of a thin sheet. The 3D heat equation is first simplified to a 1D equation
through modal expansions. Through a Laplace transform, algebraic relationships are obtained that
express the front surface temperature and heat flux in terms of those same thermal quantities on the back
surface. We expand the transfer functions as infinite products of simple polynomials using the Hadamard
Factorization Theorem. The straightforward inverse Laplace transforms of these simple polynomials lead
to relationships for each mode in the time domain. The time domain operations are implemented through
iterative procedures to calculate the front surface quantities from the data on the back surface. The iter-
ative procedures require numerical differentiation of noisy sensor data, which is accomplished by the
Savitzky–Golay method. To handle the case when part of the back surface is not accessible to sensors,
we used the least squares fit to obtain the modal temperature from the sensor data. The results from
the proposed method are compared with an analytical solution and with the numerical solution of a
3D heat conduction problem with a constant net heat flux distribution on the front surface.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

To conduct thermal measurements under harsh environment, it
has been proposed that sensors be located away from direct con-
tact with the environment and mathematical models be used to
calculate the desired quantities from the sensor measurement
data. Specifically, the front surface temperature can be determined
indirectly by solving an inverse heat conduction problem (IHCP)
[1–18] based on the transient temperature and/or heat flux mea-
sured on the back surface.

In our previous work [19], we applied the Laplace transform to
the one-dimensional heat conduction problem. Algebraic equa-
tions relating temperature and heat flux on the front and back sur-
faces were obtained. Although these equations were no different
from those given in [20–23], we proposed approximations to the
transfer functions through which the front surface temperature
and heat flux can be obtained from the data on the back surface
through mathematical operations in the time domain. No compli-
cated inverse Laplace transform is required. Following that work,
we have replaced the ad hoc approximations to the transfer func-
tions by a procedure which achieves better approximations

through iterations [24]. The method was shown to be both accu-
rate and easy to implement for one-dimensional IHCPs. However,
it is formulated to handle one-dimensional IHCPs only.

The above method for one-dimensional IHCPs is too restrictive
in measurement practices. We thus wish to generalize the method
to make it applicable to realistic measurement problems. Since our
motivation lies in measurement instrumentation, we have the flex-
ibility of selecting the geometry and even boundary conditions that
help to simplify the solution of the IHCP. We may restrict the
geometry to that of a rectangular sheet. Furthermore, we assume
that the sheet thickness is much smaller than the transverse
dimensions. Therefore, heat conduction is mostly across the thick-
ness. This special geometry and boundary condition allows us to
introduce simplification from 3-dimension to 1-dimension. Inte-
gral transformation methods have been proposed in [22]. In this
paper, we use Fourier series to convert the 3-dimensional heat con-
duction equation into a system of 1-dimensional equations. Each
equation is solved by the method we proposed in [24].

In the following section, we present the reduction to the one-
dimensional problem. Since the resulting one-dimensional problem
contains an additional source term, we present in Section 3 the
polynomial representation of the transfer function based on the
Hadamard Factorization Theorem; the polynomial representation
is a generalization of our prior result. From the polynomial
representation of the transfer function, an iterative procedure is
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obtained. From the data on the back surface, we need to extract the
data for each one-dimensional problem. In Section 4, we present
the equations we need when the sensor distribution on the back
surface is arbitrary. In Section 5, we validate our method for a sin-
gle 3D mode by comparing our results with those from analytical
solutions. In Section 6, we provide a comparison of our IHC results
with a direct three-dimensional heat conduction calculation.

2. Mathematical model and reduction to one-dimensional
problem

Although the formulation for a three-dimensional anisotropic
heat conduction problem is given in [21], we give the following for-
mulation for isotropic problem since it is the application we have
in mind. Since our interest lies in the heat input and temperature
on the front surface, we are at liberty in selecting the geometry
and boundary conditions that are most convenient in instrumenta-
tion and subsequent data processing. Thus we consider the following
heat conduction equation:

qscps
@Ts

@t
¼ ks

@2Ts

@x2 þ
@2Ts

@y2 þ
@2Ts

@z2

 !
ð1Þ

where qs, ks and cps are the density, thermal conductivity and spe-
cific heat of the solid, all assumed to be independent of tempera-
ture. We assume adiabatic boundary conditions on the back
surface and the four edge surfaces:

@Ts

@x
¼ 0 for x ¼ 0 and x ¼ lx ð2Þ

@Ts

@y
¼ 0 for y ¼ 0 and y ¼ ly ð3Þ

and

@Ts

@z
¼ 0 for z ¼ lz ð4Þ

On the front surface, the heat flux is specified:

�ks
@Ts

@z
¼ qðx; y; tÞ for z ¼ 0 ð5Þ

To simplify, introduce the following changes to dimensionless
variables:

t ¼ tcs; x ¼ lzX; y ¼ lzY; z ¼ lzZ ð6Þ

and to variables with dimensions of temperature (K)

qðx; y; tÞ ¼ ks

lz
f ðX;Y ; sÞ ð7Þ

Tsðx; y; z; tÞ ¼ hðX;Y; Z; sÞ ð8Þ

where

tc ¼
qscpsl

2
z

ks
ð9Þ

and f(X, Y, s) is the normalized front surface heat flux (with unit K).
With these substitutions, Eq. (1) becomes

@h
@s
¼ @2h

@X2 þ
@2h

@Y2 þ
@2h

@Z2 ð10Þ

with boundary conditions:

@h
@X
¼ 0 for X ¼ 0 and X ¼ Lx ð11Þ

@h
@Y
¼ 0 for Y ¼ 0 and Y ¼ Ly ð12Þ

@h
@Z
¼ 0 for Z ¼ 1 ð13Þ

where Lx = lx/lz and Ly = ly/lz. On the front surface, the heat flux is
specified:

� @h
@Z
¼ f ðX;Y; sÞ for Z ¼ 0 ð14Þ

Nomenclature

cps mass specific heat of the slab, J/(kg K)
E total error
f normalized heat flux, K
g notation for the integrand
G transfer function
ks thermal conductivity, W/(m K)
lx slab length, m
ly slab width, m
lz slab thickness, m
Lx ratio of slab length to thickness, lx/lz
Ly ratio of slab width to thickness, ly/lz
M maximum mode number along the length direction
N maximum mode number along the width direction
p pole of a transfer function
q heat flux, W/m2

s Laplace transform variable
t time, s
tc characteristic time, s
Ts temperature of the slab, K
u unit step function
U Laplace transform of temperature
x spatial coordinate variable along the length, m
y spatial coordinate variable along the width, m
z spatial coordinate variable along the thickness, m

X dimensionless spatial coordinate variable along the
length direction

Y dimensionless spatial coordinate variable along the
width direction

Z dimensionless spatial coordinate variable along the
thickness direction

Greek symbols
a thermal diffusivity, m2/s
d Kronecker delta
qs density of the slab, kg/m3

s dimensionless time
h temperature, K
H Laplace transform of the temperature
U Laplace transform of the normalized heat flux
x dimensionless frequency
n dimensionless length variable

Subscripts
b back surface quantity
f front surface quantity
m mode number along the length direction
n mode number along the width direction

3432 Z.C. Feng et al. / International Journal of Heat and Mass Transfer 54 (2011) 3431–3439



Download	English	Version:

https://daneshyari.com/en/article/659976

Download	Persian	Version:

https://daneshyari.com/article/659976

Daneshyari.com

https://daneshyari.com/en/article/659976
https://daneshyari.com/article/659976
https://daneshyari.com/

