Accepted Manuscript

The Acoustical Sensor: the photoacoustic effect in an azo-dye

S. Salmani, M.H. Majles Ara, M.S. Zakerhamidi, E. Safari

PII: S0143-7208(15)00375-7

DOI: 10.1016/j.dyepig.2015.09.028

Reference: DYPI 4939

To appear in: Dyes and Pigments

Received Date: 5 August 2015

Revised Date: 13 September 2015 Accepted Date: 17 September 2015

Please cite this article as: Salmani S, Ara MHM, Zakerhamidi MS, Safari E, The Acoustical Sensor: the photoacoustic effect in an azo-dye, *Dyes and Pigments* (2015), doi: 10.1016/j.dyepig.2015.09.028.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIP

The Acoustical Sensor: the photoacoustic effect in an azo-dye

S. Salmani^{*,1}, M. H. Majles Ara¹, M. S. Zakerhamidi², E. Safari³

1. Photonics Lab, Department of Physics, Kharazmi University, Tehran, Iran

2. Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran

3. Department of Physics, University of Tabriz, Tabriz, Iran

Abstract:

The photoacoustic (PA) signal of DR1 dye in six solvents with different polarity, density and the

coefficient of viscosity were investigated by a simple experimental set up. The measurements

were performed at 532 nm using a Nd;YAG CW laser with irradiation of 300 mW. In the middle

of experiment, A sound produced when the sample exposed to the laser irradiation at a critical

power therefore it acts as an acoustic sensor. It is demonstrated that the maximum photoacoustic

frequency amplitude of PA in an exact frequency has an inverse proportion to viscosity

coefficient of solvents and verify the theoretical equations.

Key words: Acoustical Sensor, Photoacoustic effect, DR1 solution, viscosity coefficient.

*Corresponding author. Email: salmani@khu.ac.ir, salmani.somaieh@gmail.com

Address: Photonics Lab, Department of Physics, Kharazmi University, Tehran, Iran

Tel: +98(21)81583313 Fax: +98(21)88309294

1

Download English Version:

https://daneshyari.com/en/article/6599814

Download Persian Version:

https://daneshyari.com/article/6599814

Daneshyari.com