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a b s t r a c t

An explicit simple analytical method is presented for periodic heat conduction transfer in solids by using
a perturbation method. Low order models are developed and their accuracy was compared to that of the
complete numerical model. It is shown that first and second order models can be used efficiently for rel-
atively low frequencies. An improvement of the method is then proposed by using a convergence accel-
eration of the series. This allows the use of the method at much higher frequencies.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The solution of periodic heat conduction is of special interest
because of its wide applications in engineering heat transfer. Finite
difference [1], finite volume [2], finite element [3] or meshless [4]
methods have been generally used. The usual limitation is the size
of the problem. Sometimes it is necessary to use a small time step
and the computing time can increase rapidly. A perturbation meth-
od has been used successfully in [5] to develop first order models
which can be viewed as improved lumped models for the slab, infi-
nite cylinder and spherical geometries in the case of a step re-
sponse. A second order model has been examined in [6] for the
slab and in [7,8] for the cylinder and the sphere. Furthermore,
these models have been used to solve inverse heat conduction
problems [9]. The aim of the present paper is to extend the ideas
of [5–8] to the case of periodic heat conduction (other variable sit-
uations can be studied as well). In the next sections, the mathemat-
ical foundation and solution procedure are described first. Then, a
numerical example (in two-dimensional (2-D) periodic heat con-
duction) is reported to illustrate the correctness of the proposed
method. It is shown that the first and second order models give
accurate enough results below a critical angular frequency. Finally,
a convergence acceleration is used in order to extend the frequency
range of validity of the proposed method. It is shown that the im-
proved fourth order model can be used with a high accuracy for an
adimensional frequency as high as 160.

2. Perturbation method of solution

One considers unsteady heat conduction problem in a solid of
arbitrary shape, initially at a uniform temperature Ti. All the solid
boundaries (C1) are maintained at the constant temperature Ti ex-
cepted one (C2) submitted to a variable temperature f(t). In this
work, we will focus on a sinusoidally varying function with an
angular frequency x.

By using the following change of variables:

h ¼ T � T i s ¼ k
qC t

X ¼ qCL2

k x

(
ð1Þ

where L represents the reference length, the heat equation, the
boundary and initial conditions can be written in the following adi-
mensional form:

@h
@s
¼ Dh ð2Þ

hðx;0Þ ¼ 0 at s ¼ 0

hðx; sÞ ¼ 0 on C1

hðx; sÞ ¼ f ðsÞ on C2

8>><
>>: ð3Þ

In order to develop a low order model, we introduce as in [2] the
perturbation parameter e (which will be set to one later) in the
LHS of Eq. (2):

e
@h
@s
¼ Dh ð4Þ

We now seek the solution in the following form:
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hðx; sÞ ¼
X1
n¼0

enwnðxÞ � FnðsÞ ð5Þ

where wn(x) is the nth order perturbation spatial function.
By introducing expression (5) into Eq. (4), and equating the dif-

ferent terms, one obtains the following recurrence relations:

Dw0 ¼ 0
wn�1 ¼ Dwn n > 0

�
ð6-aÞ

FnðsÞ ¼
dFn�1

dt
n > 0 ð6-bÞ

The initial and boundary conditions (1), lead to write:

wn ¼ 0 on C1

w0 ¼ 1 on C2

wn ¼ 0 on C2 and n > 0

8><
>: ð7-aÞ

F0ðtÞ ¼ f ðtÞ ð7-bÞ

FnðtÞ ¼
dnf ðtÞ

dtn ð7-cÞ

By truncating the series (5) at the first and second order, the
approximate low order solutions (h1 and h2) are given by:

h1ðx; sÞ ¼ w0ðxÞf ðsÞ þ w1ðxÞ
df
ds

ð8-aÞ

h2ðx; sÞ ¼ w0ðxÞf ðsÞ þ w1ðxÞ
df
dsþ w2ðxÞ

d2f
ds2 ð8-bÞ

The functions w0, w1 and w2 are obtained by solving Eqs. (6) with
boundary conditions (7). The explicit solutions (8) can thus be used
to calculate the temperature in the domain if the forcing function f
and its derivatives are given.

3. Test problem

In this work, we consider the case of an harmonic forcing func-
tion. The desired output was the periodic temperature in the two
dimensional perforated plate sketched in Fig. 1, composed of an in-
ner hot cylinder and an outer cold unit square. The cylinder is cen-
tred at (x, y) = (0.6, 0.6) and its radius is equal to 0.25. The
boundary conditions are a zero temperature on the cold enclosure
and a temperature varying periodically on the surface of the inner
cylinder with an angular frequency x.

This problem can be solved by using any spatial discretization
method and an implicit or explicit Euler method. In this study,
the diffuse approximation meshless method [10–14] is used with
an implicit in time scheme. The domain is discretised with 1373
nodal points, 41 on each square wall and 63 on disc boundary
(see Fig. 1). The corresponding linear system is solved at each time

step. To reach a very good accuracy on the local amplitudes of the
fluctuating field, once fixed the pulsation of the excitation, the time
step is chosen in such a way that 160 time steps are used per per-
iod of the excitation. Fig. 2 shows for example, the amplitude of the
response in the whole domain for an angular frequency X = 15.

4. Low order solutions

In this section, we compare the results given by the complete
implicit in time meshless method to those given by the approxi-
mate low order models. We have chosen to present the results
for one control point situated at (x, y) = (0.25, 0.25). This point is lo-
cated in the region with the largest error. It is worth noting how-
ever that the same behaviour has been observed on all points of
the studied domain.

To begin, let us consider the first and second order solutions
which are given by Eqs. (8-a) and (8-b). The amplitudes of the solu-
tions are sketched in Fig. 3 together with the complete numerical
solution for X = 15. It can be seen that the second order model
gives accurate results while the first order model overestimates
the response.

The difference between the complete numerical solution and
the low order solutions has been estimated locally by using the
RMS difference integrated over a period d:

d ¼
Z

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhimplicit � happroximateÞ2

q
ds ð9Þ

Nomenclature

Fn(t) time functions
f(t) forcing function
t time [s]
T temperature [�C]
x vector of coordinates

Greek symbols
a thermal diffusivity [m2 s�1]
k thermal conductivity [W m�1 K�1]

e perturbation parameter
s dimensionless time
h dimensionless temperature
wn n order spatial function

Subscripts
i initial
ref reference
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Fig. 1. Grid and boundary conditions for the simulation of the unsteady conduction
in a perforated plate. The black square symbol shows the position of a control point
in the grid.
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