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a b s t r a c t

Wall friction, temperature distribution and heat transfer through pipe walls are investigated in forced
convection with Newtonian fluids in pressure gradient driven hydrodynamically and thermally fully
developed steady laminar flow in transversally corrugated pipes. Novel analytical solutions derived via
the epitrochoid conformal mapping are presented for the velocity and temperature fields. Analytical
results are compared with numerical solutions obtained using the finite volume technique. The effect
of the corrugation amplitude and the number of waves on the friction factor, the temperature distribution
and the Nusselt number is discussed.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrodynamically and thermally fully developed laminar flow
in ducts is very common in a number of industrial applications
and has been extensively investigated. The same cannot be said
however when it comes to non-circular ducts. But the importance
of analytical and experimental results for laminar forced convec-
tion in non-circular ducts to the design of compact heat exchangers,
for example among others, cannot be overstated. Unconventional
channel geometries are encountered in a variety of compact heat
exchangers and other industrial devices. For instance, corrugated
and double-trapezoidal ducts are central to the design of honey-
comb wheels [1], and lamella type compact heat exchangers [2,3],
respectively. The latter are used extensively in pulp and paper,
alcohol, petrochemical and other chemical industries.

Early works on non-circular ducts have been reviewed by Shah
and London [4], and Shah and Bhatti [5]. Heat transfer with
power-law fluids in arbitrary cross-sectional ducts and in non-
circular geometries found in recent designs of compact heat
exchangers has been investigated by Lawal and Mujumdar [6]
and Manglik and Bergles [7], respectively. Other flow geometries
investigated in the literature include the double-sine [8], the cir-
cular-segment [9], the semi-circular [10,11], the eccentric-annular

[12], the rhombic [13], the regular polygonal [14], and several
other unusual duct shapes considered by Sunden and Faghri
[15]. Siginer and co-workers consider the flow of inelastic non-
Newtonian and viscoelastic fluids in arbitrary geometries, Letelier
and Siginer [16], Letelier et al. [17] and Siginer and Letelier [18].
Analytical expressions for the velocity and shear-stress fields for
the fully developed pressure gradient driven flow in tubes of arbi-
trary cross-section for the class of viscoinelastic–viscoplastic flu-
ids are derived in [16]. Analytical solutions for the longitudinal
and transversal fields in pipes of arbitrary cross-section for a mul-
tiple integral fluid of the memory type are developed in [17,18].
Corrugated geometries may present a highly desirable alternative
in heat transfer enhancement and to our knowledge have not re-
ceived the attention they should have commanded. Turian and
Kessler [19] assume a tube boundary described by r = R[1 + ef(h)]
and use e as the perturbation parameter to obtain an approximate
solution for the velocity field, but do not address the heat transfer
problem. Similar work for microtubes has been carried out by
Duan and Muzychka [20].

In this paper the forced convection of Newtonian fluids in
straight transversally corrugated pipes under steady, incompress-
ible, fully developed laminar flow is investigated to determine
the effect of the corrugation and the number of boundary waves
on the friction factor, temperature profile and the wall heat trans-
fer coefficient. An exact analytical solution for the velocity field via
the epitrochoid conformal mapping is presented. A new analytical
solution is derived for the temperature distribution and conse-
quently for the heat transfer coefficient. The analytical work is
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complemented by and validated through numerical simulations
using the finite volume technique. The agreement is excellent be-
tween the analytical and numerical solutions.

2. Analytical solution

The flow is considered to be laminar and steady fully developed
both thermally and hydrodynamically. Fluid properties are as-
sumed constant thus constitutive parameters do not depend on
temperature. The case of the constant wall heat flux is investigated.
It is also assumed that Fourier’s law of heat conduction is valid and
that internal energy and thermal conductivity do not depend
explicitly on the velocity gradient or other kinematic quantities.
With these assumptions the hydrodynamic and thermal problems
become fully decoupled. The solution for the velocity field is pre-
sented followed by the solution for the thermal problem which is
the main focus of the present report.

2.1. Analytical solution for the velocity field

Poiseuille flow of a Newtonian fluid in a tube of average radius a
is considered. Due to the symmetries of the problem the velocity
field is unidirectional m = [0, 0, w(x, y)], and the Navier–Stokes
equations can be simplified,
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The flow domain is mapped onto the domain inside the unit circle
via the epitrochoid conformal mapping, Muskhelishvili [21],

f ¼ xþ iy ¼ nþ ennþ1

an
ð2:3Þ

with n P 1 and e representing constants. The transformed domain n
is defined as

n ¼ qeiu; 0 6 q 6 a; �p 6 u 6 p ð2:4Þ
or in terms of Cartesian coordinates x and y,

x ¼ q cos uþ e
qnþ1

an cos½ðnþ 1Þu�

y ¼ q sinuþ e
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an sin½ðnþ 1Þu�
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This map is conformal provided |e|(n + 1) < 1; it maps the inside
of the unit circle in the n-plane into a compact region in the f-plane
with corrugated boundary of n corrugations and of radius r given
through

r2 ¼ q2 þ e2a�2nq2nþ2 þ 2ea�nqnþ2 cosðnuÞ ð2:6Þ

Since the radius varies between 1 ± e and there are n peaks e can be
regarded as the amplitude and 2p/n the wavelength of the corruga-
tion. Two examples of corrugated geometries for (n = 3, e = 0.23)
and (n = 5, e = 0.13) are given in Fig. 1.

Under the epitrochoid transformation, Eq. (2.2)1 and the related
boundary conditions become,
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Nomenclature

A area
n waviness
w axial velocity
�w average velocity
a characteristic length scale of the duct cross section
f Fanning friction factor ¼ 2�sw

a �w2eP perimeter
P pressure gradient
p pressure
Dh hydraulic diameter = 4A/~P
_qw wall heat flux
_�qw average wall heat flux
�h average heat transfer coefficient
T temperature
Tw average wall temperature
Tm bulk temperature
Nu Nusselt number ¼ Dh

�h
k

Q flow rate
k thermal conductivity

cp specific heat
x, y, z coordinates in the flow domain f
Re Reynolds number
r corrugated boundary radius

Greek symbols
q0 density
e corrugation amplitude
ec critical corrugation amplitude
l viscosity
f complex function in the flow domain
n complex function in the mapped computational domain
q, u, z coordinates in the mapped computational domain n
�sw average wall shear stress

Subscripts
b bulk
w wall

Fig. 1a. Flow domain for n = 3 and e = 0.23.
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