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a b s t r a c t

Transient heat transfer of coupled radiation and conduction inside a semitransparent composite slab of
absorbing–emitting-anisotropic scattering medium is examined. The composite slab includes two layers
with different physical properties. Surfaces and interface between two layers are supposed to be semi-
transparent and total reflection will occur there at the critical angle. Specular reflection is considered
and reflectivities are determined by Fresnel’s law and Snell’s law. A fully implicit control-volume method
is used to solve the transient energy equation and a ray-tracing/nodal-analyzing method is used to com-
pute the radiative information. A criterion for total reflection is proposed for solving the problem of inte-
gral singularity at the critical angle. Effects of conduction–radiation parameter, scattering albedo and
refractive index on coupled heat transfer are investigated. Results show that in a semitransparent med-
ium with natural surfaces, there are two sorts of temperature peaks appearing at transient heat transfer:
one is caused by external radiation heating and environmental convection cooling, still existing in steady
state; the other is due to maximum of absorption of heat caused by inhomogeneous optical properties,
only existing in transients of heat transfer.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Coupled radiative and conductive heat transfer is the main
mode of energy transfer in a semitransparent solid medium at ele-
vated temperatures, in high temperature surroundings, with large
incident radiation, or in vacuum circumstances with weak convec-
tion of low and moderate temperature. Some errors will be caused
if only considering conduction or radiation. For a long time, consid-
erable attention has been given to the problem for its many impor-
tant applications, such as multilayer spaceborne optical windows,
combustion fabrication device, the insulation properties of fibrous
and ceramic materials.

A solution to coupled radiation–conduction involves two parts:
the solution to the radiative transfer equation, and the solution to
the energy equation. An evaluation of the former can adopt such
methods as DOM (discrete ordinates method), DTM (discrete trans-
fer method), flux method, RTNAM (ray-tracing/nodal-analyzing
method), zone method, FVM (finite-volume method) and so on.
The latter can be solved using FDM (finite difference method),
FVM, FEM (finite element method), LBM (lattice Boltzmann Meth-
od) and meshless method.

Muresan et al. [1] solved the coupled conductive radiative heat
transfer in a two-layer non-scattering slab with Fresnel interfaces

subject to diffuse and obliquely collimated irradiation using a
DOM for the solution to the radiative transfer problem and a
FDM for the solution to the energy equation. In Ref. [1], adaptive
directional quadratures were developed to overcome the difficul-
ties usually encountered at the interfaces. Mishra et al. [2] exam-
ined transient conductive–radiative heat transfer in a 2-D
rectangular enclosure filled with an optically absorbing, emitting
and scattering medium using LBM for the solution to the energy
equation and the collapsed dimension method for the radiative
transfer equation, and analyzed the effects of the conduction–radi-
ation parameter, extinction coefficient and scattering albedo. Using
DOM/FDM for the solution to the radiative transfer equation and
the energy equation, David et al. [3] investigated transient heat
transfer involving radiation and conduction in a 2-D non-gray
purely absorbing glass. Using FVM/LBM, the transient conduc-
tion–radiation heat transfer in 1-D planar and 2-D rectangular
geometries was solved, and effects of the scattering albedo, the
conduction–radiation parameter and the boundary emissivity
were analyzed [4].

Most of the previous work on radiative heat transfer only con-
sidered isotropic scattering or non-scattering in the semitranspar-
ent material. However, it is well known that scattering of thermal
radiation by real particles, fibers, or impurities in a medium is by
no means isotropic and that the anisotropic scattering can play a
significant role on overall heat transfer. Consequently it is neces-
sary to carry on an investigation in radiative heat transfer within
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anisotropic scattering participating medium. Much attention has
been focused by many researchers on the problem [5–19].

Using the zone method, Goyheneche and Sacadura [7] estab-
lished a new explicit matrix relation for the calculation of the total
exchange areas (TEA) in emitting, absorbing and linearly aniso-
tropic scattering semitransparent medium with black surfaces.
Chai [9] presented a FVM to calculate transient radiative transfer
in two-dimensional irregularly shaped enclosures with anisotropic
scattering. Elghazaly [16] used the Galerkin-iterative technique to
solve the coupled conductive–radiative transfer problem in a slab
with two homogeneous layers of linearly anisotropic scattering
with specularly reflecting boundaries and analyzed the effects of
phase functions and anisotropic scattering coefficient on heat
fluxes. Reflectivity was supposed to be zero in Ref. [16]. Zhou
et al. [17] adopted the DRESOR method to deal with the radiative
transfer in an anisotropic scattering, emitting, absorbing, plane-
parallel medium with opaque surfaces, analyzing the effects of
anisotropic scattering coefficient, scattering albedo and optical
thickness. Asllanaj et al. [19] investigated transient radiative–con-
ductive heat transfer in a fibrous medium with anisotropic optical
properties using two-flux method/FEM for the solution to the radi-
ative transfer equation and the energy equation.

The RTNAM was firstly proposed by Tan and Lallemand [20] and
its advantage is that when solving radiative transfer equation, the
radiative intensity does not need to be dispersed along the space
coordinate, and the solid angle is not dispersed but is directly inte-
grated. Thus, false scattering and ray effect will not exist in the
method. So, the accuracy of this method is high in theory. Sadooghi
et al. [21,22] and Sharbati et al. [23] adopted the method for the
solution to the radiative transfer and investigated the coupled heat
transfer in a purely absorbing ceramic layer [21,22] and a cellulose
acetate layer [23]. Tan et al. [24,25] developed a two-layer [24] and
a multilayer [25] radiative transfer model using RTNAM and solved
the transient coupled heat transfer. Scattering was not considered
in Refs. [21–23] and anisotropic scattering was not considered in
Refs. [24,25]. After that, using this method, Tan et al. [26] built a
radiative heat transfer model for an anisotropic scattering layer.

Present work develops a radiative transfer model for a two-
layer composite with anisotropic scattering using the RTNAM. In
this paper, RTCs (radiative transfer coefficients) include all infor-
mation about the radiative transfer, and they are deduced by the
ray-tracing method. Local radiative heat source in the energy equa-
tion is expressed in terms of RTCs and is deduced using the nodal-
analyzing method. Semitransparent interfaces between two layers

Nomenclature

Cn specific volume heat capacity of the layer n, =cnqn,
J m�3 K�1

FVn a direct exchange area of Vi vs Vi in the nth layer, equal
to FVn = 4jnDxn � 2[1 � E3(jnDxn)], n = 1, 2

h1, h2 convective heat transfer coefficient at surfaces of S1 and
S2, respectively, W m�2 K�1

H1, H2 convection–radiation parameter, H1 ¼ h1=rT3
r and

H2 ¼ h2=rT3
r

L thickness of the composite medium, m
kn thermal conductivity of the nth layer, W m�1 K�1, n = 1,

2
kie, kiw harmonic mean thermal conductivity at interface ie and

iw of control volume i, respectively
Nn kn=ð4rT3

r LÞ, conduction–radiation parameter of the nth
layer, n = 1, 2

Ncv1, Ncv2 number of control volumes in the first layer and the
second layer, respectively

Mt total number of control volumes of the composite med-
ium

ni refractive index of the control volume i; when i 6 Ncv1,
ni is equal to the refractive index of the first layer, and
when i > Ncv1, ni is equal to the refractive index of the
second layer

nn refractive index of the nth layer, n = 1, 2
Su, Sv black surfaces, S�1 and S+1, respectively
S1, S2 boundary surfaces
S�1, S+1 black surfaces representing the surroundings
(SuSv), (SuVj), (VjSu), (ViVj) absorbing RTCs of surface vs surface,

surface vs volume, volume vs surface and volume vs
volume

[SuSv], [SuVj], [VjSu], [ViVj] scattering RTCs of surface vs surface,
surface vs volume, volume vs surface and volume vs
volume

T absolute temperature, K
Tg1, Tg2 gas temperatures for convection, K
Tr,T0 reference temperature, initial temperature, K
t physical time, s
t* dimensionless time, ð4rT3

r =CnLÞt, only for the case of
Cn = constant

xj
i normal distance between element i and element j, m

bn a common ratio of geometric progression when the
radiation transfers in the nth layer, n = 1, 2

bij a common ratio of geometric progression when the
radiation enters the jth layer from the ith layer and
transfers inside the two-layer medium

cij transmissivity at interface when radiation enters the j
layer from the i layer, equal to 1 � qij

Dt time interval, s
Dxn thickness of each control volume of the nth layer, m
dij a Dirac functor; if i = j, then dij = 1, and if i – j, then dij = 0
(dx)ie, (dx)iw distance between nodes i and i + 1 and between i and

i � 1, respectively
gn 1 �xn, n = 1, 2
Hq

nðhÞ;H
h
nðhÞ radiative energy distribution function of forward

scattering and backward scattering respectively, for
the nth layer, n = 1,2

h, hs incident angle, scattering angle, rad
hij refractive angle when radiation enters the j layer from

the i layer
jn extinction coefficient of the nth layer, m�1, n = 1, 2
qij reflectivity at interface when radiation enters the j layer

from the i layer
r Stefan–Boltzmann constant, =5.6696 � 10�8 W m�2 K�4

Un scattering phase function of the nth layer, n = 1, 2
Ur

i radiative heat source of the control volume i
xn scattering albedo of the nth layer, n = 1, 2

Subscripts
k;? component for parallel and perpendicular polarization,

respectively
ie,iw right and left interface of control volume i
�1, +1 black surfaces S�1 and S+1, respectively

Superscripts
b,f,t incidence radiation from negative, positive and both

direction relative to the x axis, respectively
h, q backward scattering and forward scattering relative to

the incident direction, respectively
r radiation
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