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a b s t r a c t

In the present work the single-phase-lagging heat conduction model is re-derived analytically from the
Boltzmann transport equation. In contrast to the Maxwell–Cattaneo law (CV model), it is Galilean invari-
ant in the moving media. Based on this model, the governing equation of the microscale heat conduction
is established, which is formulated into a delay partial differential equation. The corresponding initial and
boundary conditions are prescribed. The thermal oscillation of the single-phase-lagging heat conduction
is investigated.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the classical Fourier law in a homogeneous and isotro-
pic thermally conducting medium

qðr; tÞ ¼ �krTðr; tÞ; ð1Þ

where the temperature gradient $T(r, t) is a vector function of the
position vector r and the time variable t, the vector q(r, t) is called
the heat flux, k is the thermal conductivity of the material. This clas-
sical law has been widely and successfully applied to the conven-
tional engineering heat conduction problems, in which the system
has large spatial dimension and the emphasis is on the long time
behavior. However, it leads to the infinite speed of heat propaga-
tion, implying that a thermal disturbance applied at a certain loca-
tion in a heat conduction medium can be sensed immediately
anywhere else in the medium. This is unaccepted in the transient
behavior at extremely short time, say, on the order of picoseconds
to femtoseconds. An example is the ultrafast laser heating in ther-
mal processing of materials.

Experimentally it is also shown that the propagation of second
sound, ballistic phonon propagation and phonon hydrodynamics in
solids at low temperatures depart significantly from the usual par-
abolic description [1]. With the advances of modern microfabrica-
tion technology, more and more microdevices with micro- and
nano-scale dimension emerge in various micromechanical sys-
tems. The understanding of the microscale heat transport phenom-
ena is critical for the further development of the nanotechnology,
especially for the cooling of the large scale integrate circuit.
However, the traditional Fourier law leads to the unaccepted result

for the microscale heat conduction [2–4]. Many phenomena in the
discrete systems including the low-dimensional lattices also chal-
lenge the validity of the classical Fourier law [5–7].

Much effort has already been devoted to the modification of the
classical Fourier law, which leads to many non-Fourier laws. The
most famous one among them is the CV model proposed by Catta-
neo and Vernotte [8–10]:

s
oq
ot
þ q ¼ �krT; ð2Þ

where s is the time delay. The CV model gives rise to a wave type of
heat conduction equation called the hyperbolic heat conduction
equation [11]. The natural extension of this model is

qðr; t þ sÞ ¼ �krTðr; tÞ; ð3Þ

which was proposed by Tzou [12–16]. The constitutive relation (3) is
called the single-phase-lagging (SPL) heat conduction model. The
model (3) was further extended to the dual-phase-lagging (DPL)
model by Tzou and formulated mathematically as follows [1,17–19]:

qðr; t þ sqÞ ¼ �krTðr; t þ sTÞ; ð4Þ

where sT and sq are the phase lags of the temperature gradient and
the heat flux vector, respectively. The first order Taylor expansion of
Eq. (4) gives

qðr; tÞ þ sq
oq
ot
ðr; tÞ ffi �k rTðr; tÞ þ sT

o

ot
½rTðr; tÞ�

� �
; ð5Þ

which leads to the following governing equation of the temperature
field:

Ttðr; tÞ þ sqTttðr; tÞ ¼ aðDTðr; tÞ þ sTDTtðr; tÞÞ; ð6Þ

where the subscript t indicates the partial derivative with respect to
time.
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Eq. (6) plays a significant role in the investigation of the micro-
scale heat conduction. Firstly it is a unified form of the energy
equations of the phonon–electron interaction model [20] and the
phonon scattering model [11,21]. These two models have been
developed in examining energy transport involving the high-rate
heating in which the non-equilibrium thermodynamic transition
and the microstructural effect become important associated with
shortening of the response time [1,22]. The high-rate heating is
developing rapidly due to the advancement of high-power short-
pulse laser technologies [23–27]. In addition to its application in
the ultrafast pulse-laser heating, the microscale heat conduction
equation (6) also arises in describing and predicting phenomena
such as temperature pulses propagating in superfluid liquid he-
lium, nonhomogeneous lagging response in porous media, thermal
lagging in amorphous materials, and effects of material defects and
thermo-mechanical coupling, etc. [1]. The study of Eq. (6) is thus of
considerable importance in understanding and applying these rap-
idly emerging technologies. We have examined its well-posedness
[28,29] and investigated the thermal oscillation and resonance
phenomena in detail [30] which are believed to be a manifestation
of non-equilibrium behavior of microscale heat conduction [22].

Unfortunately, it was shown that the CV model violates the Gal-
ilean principle of relativity [31], thus it cannot be applied to the
moving medium. Therefore, it is desirable to examine whether
the model (3) suffers from the same drawback.

The Boltzmann transport equation (BTE) is a fundamental equa-
tion in statistical physics for describing the non-equilibrium phe-
nomena. Therefore, many efforts are dedicated to establishing
the non-Fourier laws from the BTE. The phonon–electron interac-
tion model [20] was developed from BTE on a quantum mechanical
and statistical basis. A phonon radiative transport equation be-
tween two parallel plates was established from the BTE for the heat
transport in dielectric solid films [3]. Based on the BTE, Chen
[32,33] proposed a ballistic–diffusive heat conduction model of
microscale heat transport in devices where the characteristic
length is comparable to the mean free path of the energy-carrier
and/or the characteristic time is comparable to the relaxation time
of the energy-carrier. The classical Fourier law and CV model were
also re-established from the BTE [4]. Recently, we re-derived the
dual-phase-lagging heat conduction model (4) from the discrete
form of the BTE [34]. In the present work the methodology in
[34] is developed to re-establish the SPL heat conduction model
(3) from the BTE in the partial differential equation form.

Finally, the governing equation of the SPL heat conduction,
which is expressed as the delay partial differential equation, is ob-
tained by combining Eq. (3) with the energy balance equation. The
associated initial and boundary conditions for this equation are
prescribed. The thermal oscillation phenomenon is investigated.

2. Examination of SPL model by Galilean principle of relativity

In [31], it was found that the CV model is not Galilean invariant.
In this section we attempt to examine the SPL model (3). Consider
the following Galilean transformation and some notations:

r0 ¼ r� Ut; t ¼ t; hðr0; tÞ ¼ Tðr0; tÞ; q0ðr0; tÞ ¼ qðr0; tÞ; ð7Þ

where U is the constant velocity between two inertial reference
frames. From the first relation in Eq. (7), it is evident that
rr0 ¼ rr. Therefore, we have

rr0hðr0; tÞ ¼ rrTðr; tÞ: ð8Þ

Subsequently, Eq. (3) becomes

q0ðr0; t þ sÞ ¼ �krr0hðr0; tÞ: ð9Þ

The observation shows that Eq. (9) has the same form as Eq. (3) and
it does not involve the velocity U. Thus the SPL heat conduction
model is invariant under the Galilean transformation (7) and can
be employed to study the microscale heat conduction problems in
moving media. Therefore, compared with the CV model, it has the
obvious advantage.

Note that the first order Taylor expansion of the left side of Eq.
(3) with respect to the time variable gives rise to the CV model (2)
which violates the Galilean principle of relativity. Then one natural
question is whether the higher order approximation of the left side
of Eq. (3) would lead to the Galilean invariant heat conduction
models. In order to address this question, we first consider the fol-
lowing heat conduction model with the lagging behavior:

qðr; tÞ þ s
oqðr; tÞ

ot
þ s2

2
o2qðr; tÞ

ot2 ¼ �krT; ð10Þ

which is obtained by the second order approximation of the left side
of Eq. (3). By the Galilean transformation (7), we have

oqðr; tÞ
ot

¼ oq0ðr0; tÞ
ot

� oq0ðr0; tÞ
or0

� U; ð11Þ

o2qðr; tÞ
ot2 ¼ o2q0ðr0; tÞ

ot2 � 2
o2q0ðr0; tÞ

otor0
� Uþ U � o

2q0ðr0; tÞ
o2r0

� U: ð12Þ

Substituting Eqs. (8), (11) and (12) into Eq. (10) yields

q0ðr0; tÞ þ s
oq0ðr0; tÞ

ot
� oq0ðr0; tÞ

or0
� U

� �

þ s2

2
o2q0ðr0; tÞ

ot2 � 2
o2q0ðr0; tÞ

otor0
� U

"
þU � o

2q0ðr0; tÞ
o2r0

� U
#
¼ �krr0hðr0; tÞ:

ð13Þ
Note that Eq. (13) depends on the constant velocity U. This indicates
that the constitutive relation (10) is not independent on the obser-
ver’s speed, therefore, violates the Galilean principle of relativity.
Similar deductions show that the other higher order approxima-
tions of the SPL heat conduction model (3) suffer from the same
drawback. From the above derivation, one can see that it is the pres-
ence of the time partial derivative in the constitutive relation that
leads to the violation of the Galilean principle of relativity.

3. Boltzmann transport equation and SPL model

3.1. Boltzmann transport equation

In the absence of external forces, the Boltzmann transport equa-
tion reads

Nomenclature

f distribution function
k thermal conductivity
r position vector
q heat flux
t time variable
T temperature field
v velocity vector

Greek symbols
s relaxation time
sq phase lag of the heat flux vector
sT phase lag of the temperature gradient
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