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a b s t r a c t

Combined forced and free flow in a vertical channel with an adiabatic wall and an isothermal wall is
investigated. The laminar, parallel and fully developed regime is considered. A uniform horizontal mag-
netic field is assumed to be applied to the fluid. The local balance equations are written in a dimension-
less form and solved by taking into account the effects of Joule heating and viscous dissipation. The
solutions are obtained both analytically by a power series method and numerically. The dimensionless
governing parameters affecting the velocity and temperature profiles are the Hartmann number and
the ratio between the Grashof number and the Reynolds number. Dual solutions are shown to exist for
every value of the Hartmann number within a bounded range of the ratio between the Grashof number
and the Reynolds number. Outside this range, no parallel flow solutions of the problem exist.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Some authors [1–5] have pointed out that the laminar solution
of steady natural or mixed convection problems may be not
unique. In particular, the existence of dual solutions of boundary
value problems describing external flows has been shown in Refs.
[1–4]. Recently [5], the following result has been obtained: for fully
developed laminar flow in a plane vertical channel with isothermal
walls at the same temperature, the local balance equations admit
two different solutions for any given value of the volume flow rate.
Moreover, in the case of upward mean flow, there exist a maxi-
mum value of the volume flow rate above which no laminar paral-
lel flow solution is admitted [5]. The presence of dual solutions is
due to the nonlinearity of the balance equations produced by vis-
cous dissipation. Situations in which the fully developed laminar
flow in a vertical channel is described by nonlinear balance equa-
tions occur, for instance, when a magnetohydrodynamic force is
present and the thermal generation due to Joule effect is non neg-
ligible. In recent years, much attention has been devoted to the
study of magnetohydrodynamic effects on natural and mixed con-
vection flows [6–11]. Indeed, convective flows in the presence of
magnetic fields occur in many technical applications, such as, for
instance, the optimization of industrial casting of metals [12]. In
particular, in [6] an analytical solution for the natural convection
in a two-dimensional rectangular cavity has been determined, in
the presence of a vertical magnetic field. Pan and Li [7] have stud-

ied the mixed convection in a vertical plane channel with a hori-
zontal magnetic field, in conditions of microgravity with a
gravitational acceleration that oscillates in time with a sinusoidal
law (g-jitter effect). The mixed convection flow in a horizontal cir-
cular duct in the presence of a uniform vertical magnetic field has
been studied numerically in Ref. [8]. An experimental study on the
natural convection of a Na22K78 alloy in a cavity with a rectangular
section, in the presence of a vertical magnetic field, has been pre-
sented by Burr and Müller [9]. These authors have shown that
the magnetic field produces a systematic decrease of heat fluxes
in the fluid. In Ref. [10], the authors study the mixed convection
in a vertical channel by considering the effects of viscous dissipa-
tion and of Joule heating. They determine the velocity and the tem-
perature distribution both analytically, by means of a perturbation
expansion, and numerically, by a finite difference method. Sposito
and Ciofalo [11] have obtained analytical solutions of the local bal-
ance equations for fully developed mixed convection in a vertical
plane channel, by considering isothermal walls and several electric
boundary conditions.

In this paper, the steady laminar flow of an electrically conduct-
ing fluid in a plane vertical channel is considered. The velocity field
is parallel to the gravitational acceleration and is orthogonal to the
external magnetic field; the latter is uniform and is not influenced
by the fluid flow. One of the channel walls is adiabatic, while the
other is isothermal. The local balance equations are nonlinear
and the boundary value problem, solved analytically, presents
two different solutions for each value of the prescribed pressure
gradient, provided that the latter lies within a bounded range out-
side which no laminar and parallel solution exists.
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2. Governing equations

We consider the steady laminar flow of an electrically conduct-
ing fluid of electric conductivity r in a vertical parallel plane chan-
nel of width L. The X-axis of the coordinate system is opposite to
the gravitational acceleration ~g and the Y-axis is perpendicular to
the channel walls which are assumed to be impermeable (see
Fig. 1). Flow is parallel so that the velocity is directed along the
X-axis. The left wall (at Y ¼ 0) is insulated (adiabatic) and the right
one (at Y ¼ L) is kept at the constant temperature Tw. The fluid mo-
tion is driven simultaneously by an applied pressure gradient, the
buoyancy force and the MHD force due to a uniform external mag-
netic induction field ~B perpendicular to the channel walls. No
external electric field is applied. Moreover, the magnetic Reynolds
number is so small that the magnetic field induced by the moving
fluid is negligible with respect to the external magnetic field.

The induced electric field is ~E ¼ ~U �~B, so that the current den-
sity is given by

~J ¼ r~E ¼ r ~U �~B; ð1Þ

where r is the electric conductivity of the fluid, which will be con-
sidered as constant. Since ~B is orthogonal to ~U the magnetic body
force per unit volume can be expressed as

~f ¼ �rB2~U: ð2Þ

The power per unit volume generated by Joule effect is

qg ¼~J �~E ¼ rð~U �~BÞ � ð~U �~BÞ ¼ rB2U2: ð3Þ

Let us denote by q the density at the reference temperature Tref . The
fully developed parallel flow condition and the uniform wall tem-
perature imply that the fluid velocity U along X and the fluid tem-
perature T depend only on Y, the hydrodynamic pressure
P ¼ pþ qgX depends only on X and dP=dX is constant. We also as-
sume that the Boussinesq approximation holds and that both the
Joule heating and the heat generation by viscous dissipation must

be taken into account. The momentum and energy equations can
be expressed as

l
d2U

dY2 � rB2U þ qgbðT � Tref Þ �
dP
dX
¼ 0; ð4Þ

k
d2T

dY2 þ rB2U2 þ l
dU
dY

� �2

¼ 0: ð5Þ

The reference temperature Tref is chosen equal to the temperature
Tð0Þ of the adiabatic wall. According to the Boussinesq approxima-
tion, the values of q, l, b, k and r are taken at the reference temper-
ature Tref . The no slip conditions and the prescribed thermal
boundary conditions are given by

Uð0Þ ¼ UðLÞ ¼ 0; ð6Þ
dT
dY

����
Y¼0
¼ 0; TðLÞ ¼ Tw: ð7Þ

Nomenclature

An series coefficients
~B magnetic induction field
B modulus of ~B
~E induced electric field
~f magnetic body force
~g acceleration due to the gravity
g modulus of ~g
Gr Grashof number, Eq. (12)
~J current density
k thermal conductivity of the fluid
L channel width
M Hartmann number, Eq. (12)
P hydrodynamic pressure, pþ qg X
qg power generated per unit volume
Re Reynolds number, Eq. (12)
T temperature
Tw wall temperature
Tref reference temperature
u dimensionless velocity
~U velocity
U vertical velocity component
Ur reference velocity, Eq. (13)
X vertical Cartesian coordinate
Y horizontal Cartesian coordinate
y dimensionless coordinate, Eq. (12)

Greek symbols
a slope of uðyÞ at y ¼ 0, Eq. (16)
b volumetric coefficient of thermal expansion
DT temperature scale, Eq. (13)
/ dimensionless flux, Eq. (25)
K dimensionless parameter, Eq. (12)
l dynamic viscosity
m kinematic viscosity
# dimensionless temperature, Eq. (12)
q mass density
r electric conductivity
sXY shear stress applied at the wall

Superscripts, subscripts
0 derivative with respect to y
ð�Þ positive/negative threshold value
cr threshold value
f first branch of solutions
JH Joule heating
l left branch of solutions
r right branch of solutions
s second branch of solutions
VD viscous dissipation

Fig. 1. Drawing of the vertical channel.
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