Accepted Manuscript

Chemical reactivity of Ga-based liquid metals with redox active species and its influence on electrochemical processes

Benchaporn Lertanantawong, Panjaphong Lertsathitphong, Anthony P. O'Mullane

PII: S1388-2481(18)30131-0

DOI: doi:10.1016/j.elecom.2018.05.026

Reference: ELECOM 6223

To appear in: Electrochemistry Communications

Received date: 3 May 2018 Revised date: 23 May 2018 Accepted date: 29 May 2018

Please cite this article as: Benchaporn Lertanantawong, Panjaphong Lertsathitphong, Anthony P. O'Mullane, Chemical reactivity of Ga-based liquid metals with redox active species and its influence on electrochemical processes. Elecom (2017), doi:10.1016/j.elecom.2018.05.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Chemical reactivity of Ga-based liquid metals with redox active species and its influence on electrochemical processes

Benchaporn Lertanantawong,*1 Panjaphong Lertsathitphong1 and Anthony P. O'Mullane*2

¹ Nanoscience and Nanotechnology Graduate Program, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand

² School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia

*anthony.omullane@qut.edu.au; benchaporn.ler@kmutt.ac.th

Abstract

Room temperature liquid metals based on gallium demonstrate interesting physical and chemical properties when placed in electrochemical environments. In this work we explore the applicability of hanging liquid metal droplets as electrode materials for simple surface insensitive and surface sensitive electron transfer reactions, namely the electrochemical reduction of $[Ru(NH_3)_6]^{3+}$ and $[Fe(CN)_6]^{3-}$ ions in solution. Significantly we found that for both redox species the electron transfer process was impeded at galinstan (68.5% Ga, 22.5% In and 10% Sn). This is related to the chemical reactivity of the Ga component which is oxidized when exposed to aqueous solutions of $[Ru(NH_3)_6]^{3+}$ and $[Fe(CN)_6]^{3-}$ to generate the reduced form of the redox mediator. For the former this results in the production of Ru-red and Ru-brown

Download English Version:

https://daneshyari.com/en/article/6600631

Download Persian Version:

https://daneshyari.com/article/6600631

<u>Daneshyari.com</u>