Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Bubble departure frequency in forced convective subcooled boiling flow

R. Situ^{a,*,1}, M. Ishii^b, T. Hibiki^b, J.Y. Tu^a, G.H. Yeoh^c, M. Mori^d

^a RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, PO Box 71, Bundoora, Victoria 3083, Australia

^b School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017, USA

^c Nuclear Technology Division, Australian Nuclear Science Technology Organization, PMB 1, Menai, NSW 2234, Australia

^d R&D Center, Tokyo Electric Power Company, 4-1 Egasaki, Tsurumi, Yokohama, Kanagawa 230-8510, Japan

ARTICLE INFO

Article history: Received 11 December 2006 Received in revised form 18 April 2008 Available online 12 June 2008

Keywords: Subcooled boiling Bubble departure frequency Flow visualization Forced convection Bubble waiting time Bubble growth time Bubble departure size

ABSTRACT

Forced convective subcooled boiling flow experiments were conducted in a vertical upward annular channel. Water was used as the testing fluid, and the tests were performed at atmospheric pressure. A high-speed digital video camera was applied to capture the dynamics of the bubble nucleation process. Bubble departure frequencies were obtained from the video for a total of 58 test conditions. The non-dimensional analysis was performed on the current data as well as available data from literature. Existing models and correlations were compared with the experimental data of bubble waiting time, growth time, and departure frequency. The correlations developed for pool boiling flow do not work well for forced convective subcooled boiling flow, while the models proposed for subcooled boiling flow cannot predict the bubble departure frequency in wide experimental ranges. Dimensionless bubble departure frequency is correlated with non-dimensional nucleate boiling heat flux. The new correlation agrees reasonably well with existing experimental data at lower wall superheat.

© 2008 Elsevier Ltd. All rights reserved.

HEAT ... M

1. Introduction

The subcooled boiling region is characterized, in convective flow boiling, as boiling occurring close to the heated wall while the remaining bulk of the fluid is subcooled. Bubbles will be rapidly condensed if they move out of the developing saturation layer. In the subcooled region, there exists a small void fraction. Gradually, as the bulk is heated by conduction and convection, the saturation layer expands and eventually covers the entire flow channel. Subcooled boiling flow comprises all the interactive, complicated, and dynamic processes such as hydrodynamics, heat and mass transfer, nucleation, departure, coalescence and breakup of bubbles. Many industrial applications, for instance, boiler, boiling water reactor, and the new generation of electronic and computer system, are seriously interested in the understanding and modeling of subcooled boiling.

In spite of enormous efforts, bubble nucleation and departure in subcooled boiling flow still pose a challenge work. Bubble nucleation happens within the small activated cavities at the heater surface when the wall temperature exceeds the saturation temperature of the liquid at the local pressure. Bubbles subsequently detach from the nucleation site due to the forces acting on them in the axial and normal directions. Two important parameters associated with departure are the bubble departure frequency and bubble departure size, which are defined as the frequency and size of bubble when departing from the nucleation cavities, respectively.

The bubble departure phenomena in pool boiling have been studied since 1950s. Zuber [1] found that bubble departure and the flow regimes are similar to the formation of gas bubbles at orifices. According to Zuber [2], three regimes of vapor bubble departure from the nucleation site can be discerned: (1) Laminar regime: When vapor flow rates are very low, bubbles rise at a constant velocity, and do not interact with each other. The bubble diameter is almost independent of vapor flow rate, and the bubble departure frequency increases with increasing vapor flow rate. This regime is also referred as the region of static, separated or isolated bubbles. (2) Turbulent regime: When vapor flow rates are intermediate, the bubble departure diameter increases with flow rate while bubble departure frequency remains constant. A bubble interacts and may coalesce with its predecessor above the nucleation site, and the bubble size is non-uniform. This regime is also referred as the region of multiple or interfering bubbles. (3) When vapor flow rates are even higher, a swirling vapor stream is generated at the nucleation site. The vapor jet is similar to a tornado or a waterspout. The current study focuses on the bubble departure phenom-

^{*} Corresponding author. Tel.: +61 7 31382452; fax: +61 7 31388381. *E-mail address:* situ@qut.edu.au (R. Situ).

¹ Current address: School of Engineering Systems, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia.

Nomenclature

bconstantTtemperature C_{ev} coefficient T_0 bubble surface temperature C_p specific heat at constant pressurettimeDdiameteruvelocity F_d drag force u velocity F_{ad} trag forceGreek symbols F_{gv} gravity force α thermal diffusivity F_p pressure force δ thermal alger thickness F_{gv} quasi-steady force ρ density F_{si} shear lift force σ surface tension f_d bubble departure frequency μ viscosityGmass flux σ surface tension f_d bubble coefficient b bubble or bulk h_{in} heat or aporization (laten theat) c cavity or convective f_a lacob number d departure k thermal conductivity e effective N_{rot} dimensionless bubble growth time F_C forced convective N_{rot} dimensionless bubble growth time F_C forced convective N_{rot} dimensionless heat flux H hydraulic N_{rot} dimensionless heat flux H hydraulic N_{rot} dimensionless heat flux H hydraulic h heat transfer coefficient g vapor phase h heat or aporization (laten theat) c cavity or convective f liquid phase F_C fo	Α	area	S	suppression factor
C_{ev} coefficient T_0 bubble surface temperature C_p specific heat at constant pressurettime D diameteruvelocity F_d drag forceuvelocity F_{du} unsteady drag force (growth force) <i>Greek symbols</i> F_g gravity force α thermal alger thickness F_{qs} quasi-steady force δ thermal layer thickness F_{qs} quasi-steady force ρ density F_s surface tension force ρ density F_s surface tension force ρ density f_d bubble departure frequency μ viscosity G mass flux g gravitational accelerationSubscripts h heat transfer coefficient b bubble to bulk h_g lacob number d departure A_a active nucleation site density ev evaporation N_{rd} dimensionless bubble departure frequency f liquid phase N_{rd} dimensionless bubble growth time C forced convective A_a active nucleation site density gv ayor phase N_{rd} dimensionless bubble departure frequency f liquid phase N_{rd} dimensionless bubble departure frequency f liquid phase N_{rd} dimensionless bubble growth time C forced convective N_{rd} dimensionless hubble growth time G growth N_{rd} <t< td=""><td>b</td><td>constant</td><td>Т</td><td>temperature</td></t<>	b	constant	Т	temperature
C_p specific heat at constant pressurettimeDdiameteruvelocityFadrag force W F_{du} unsteady drag force (growth force) $Greek symbols$ F_g gravity forceathermal diffusivity F_p pressure force δ thermal layer thickness F_g quasi-steady force θ_1 inclination angle F_s surface tension force ρ density F_s surface tension force σ surface tension f_d bubble departure frequency μ viscosity G mass flux W viscosity g gravitational acceleration $Subscripts$ h heat transfer coefficient b bubble or bulk i_g heat of vaporization (latent heat) c cavity or convective J_a active nucleation site density e effective N_{td} dimensionless bubble departure frequency f liquid phase N_{td} dimensionless bubble growth time G growth N_{td} dimensionless bubble growth time G growth N_{td} dimensionless heat flux g vapor phase N_{td} dimensionless heat flux g vapor phase N_{td} dimensionless heat flux f r N_{td} dimensionless heat flux f heat deated N_{td} dimensionless heat flux f r N_{td} dimensionless heat flux f	C_{ev}	coefficient	T_0	bubble surface temperature
	$C_{\rm p}$	specific heat at constant pressure	t	time
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ď	diameter	и	velocity
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$F_{\rm d}$	drag force		
F_g gravity force α thermal layer thickness F_{qs} quasi-steady force δ thermal layer thickness F_{qs} guasi-steady force ρ density F_s surface tension force ρ density F_s surface tension force ρ density f_d bubble departure frequency μ viscosity g gravitational accelerationSubscripts h heat transfer coefficient b bubble or bulk i_{gs} heat of vaporization (latent heat) c cavity or convective Ja Jacob number d departure k thermal conductivity e effective N_{rd} dimensionless bubble departure frequency f liquid phase N_{rd} dimensionless bubble growth time F_C for convective N_{rd} dimensionless ingle-phase forced convective heat flux H hydraulic N_{qerc} dimensionless heat flux r relative N_{qqW} dimensionless nucleate boiling heat flux r relative N_{qqW} dimensionless nucleate boiling heat flux r relative N_{qhW} dimensionless nucleate boiling heat flux r relative N_{qhW} dimensionless huele that r relative N_{qr} dimensionless nucleate boiling heat flux r relative N_{qr} dimensionless nucleate boiling heat flux r relative N_{qr} numbersubbubble departure </td <td>F_{du}</td> <td>unsteady drag force (growth force)</td> <td colspan="2">Greek symbols</td>	F _{du}	unsteady drag force (growth force)	Greek symbols	
F_{ps} pressure force δ thermal layer thickness F_{qs} quasi-steady force θ_i inclination angle F_s surface tension force ρ density F_s shear lift force σ surface tension f_d bubble departure frequency μ viscosity G mass flux $uss flux$ $viscosity$ g gravitational accelerationSubscripts h heat transfer coefficient b bubble or bulk i_{gg} heat of vaporization (latent heat) c cavity or convective Ja Jacob number d departure k thermal conductivity e effective N_{ad} active nucleation site density ev evaporation N_{rd} dimensionless bubble growth timeFCforced convective N_{rd} inverse of dimensionless bubble growth timeFCforced convective N_{rd} dimensionless heat flux g vapor phase N_{qdr} dimensionless heat flux r related N_{qdr} dimensionless heat flux using bubble departure diame-h N_{qdr} dimensionless heat flux using cavity diameter s N_{qdr} dimensio	$F_{\rm g}$	gravity force	α	thermal diffusivity
$\begin{array}{cccc} F_{\rm gs} & {\rm quasi-steady force} & \theta_{\rm i} & {\rm inclination angle} \\ F_{\rm s} & {\rm surface tension force} & \rho & {\rm density} \\ F_{\rm sl} & {\rm shear lift force} & \rho & {\rm density} \\ f & {\rm bubble departure frequency} & \mu & {\rm viscosity} \\ G & {\rm mass flux} \\ g & {\rm gravitational acceleration} & {\rm Subscripts} \\ h & {\rm heat transfer coefficient} & b & {\rm bubble or bulk} \\ i_{fg} & {\rm heat of vaporization (latent heat)} & c & {\rm cavity or convective} \\ J & {\rm Jacob number} & d & {\rm departure} \\ k & {\rm thermal conductivity} & e & {\rm effective} \\ N_{\rm a} & {\rm active nucleation site density} & ev & {\rm evaporation} \\ N_{\rm rd} & {\rm dimensionless bubble departure frequency} & f & {\rm liquid phase} \\ N_{\rm fc} & {\rm inverse of dimensionless bubble growth time} & {\rm FC} & {\rm forced convective} \\ N_{\rm qd} & {\rm dimensionless heat flux} & g & {\rm vapor phase} \\ N_{\rm qc} & {\rm dimensionless heat flux} & {\rm growth} \\ N_{\rm qG} & {\rm dimensionless heat flux} & {\rm the heat demonstrate boiling heat flux} \\ N_{\rm qG} & {\rm dimensionless heat flux} & {\rm rr} & {\rm relative} \\ N_{\rm Rd} & {\rm dimensionless heat flux} & {\rm rr} & {\rm relative} \\ N_{\rm Rd} & {\rm dimensionless heat flux} & {\rm rr} & {\rm relative} \\ N_{\rm Rd} & {\rm dimensionless heat flux} & {\rm rr} & {\rm relative} \\ N_{\rm Rd} & {\rm dimensionless heat flux} & {\rm rr} & {\rm relative} \\ N_{\rm Rd} & {\rm dimensionless heat flux} & {\rm rr} & {\rm relative} \\ N_{\rm Rd} & {\rm dimensionless heat flux} & {\rm subs cooling} \\ P_{\rm rf} & {\rm liquid Prandtl number} & W & {\rm waiting} \\ P_{\rm r} & {\rm liquid Prandtl number} & W & {\rm waiting} \\ P_{\rm r} & {\rm radius} & {\rm x} & {\rm coordinate} \\ Re & {\rm Reynolds number} & {\rm y} & {\rm coordinate} \\ \end{array} \right$	$F_{\rm p}$	pressure force	δ	thermal layer thickness
F_s surface tension force ρ density F_{s1} shear lift force σ surface tension f_d bubble departure frequency μ viscosity G mass flux u viscosity g gravitational acceleration b bubble or bulk it_{g2} hheat of vaporization (latent heat) c cavity or convective Ja Jacob number d departure k thermal conductivity e effective N_a active nucleation site density ev evaporation N_{rd} dimensionless bubble departure frequency f liquid phase N_{rd} dimensionless bubble growth timeFCforced convective N_{rd} dimensionless bubble growth time FC growth N_{qd} dimensionless single-phase forced convective heat flux g vapor phase N_{qerc} dimensionless heat flux using bubble departure diame- h heated N_{qrw} dimensionless nucleate boiling heat flux r relative N_{qw} dimensionless heat flux using cavity diameter s saturation p pressuresubbcooling r relative N_{qw} dimensionless heat flux w wailing q'' heat flux w wailing q'' heat flux w wailing q'' heat flux v'' coordinate q'' heat flux $w''''''q''''''''''''''''''''''''''''''''''''$	Fqs	quasi-steady force	θ_{i}	inclination angle
F_{s1} shear lift force σ surface tension f_d bubble departure frequency μ viscosity G mass flux μ viscosity g gravitational accelerationSubscripts h heat transfer coefficient b bubble or bulk i_{fg} heat of vaporization (latent heat) c cavity or convective Ja Jacob number d departure k thermal conductivity e effective N_a active nucleation site density ev evaporation N_{rd} dimensionless bubble departure frequency f liquid phase N_{rd} dimensionless bubble growth timeFCforced convective N_{rd} dimensionless bubble waiting time g vapor phase N_{qc} dimensionless single-phase forced convective heat flux H hydraulic N_{qg} dimensionless nucleate boiling heat flux r relative N_{qW} dimensionless nucleate boiling heat flux r relative N_{qW} dimensionless heat flux using cavity diameter s saturation p pressuresubsubcooling r Pr_{f} liquid Prandtl number W waiting q'' heat flux w wail r rabity r claive Re Reynolds number y coordinate	Fs	surface tension force	ho	density
$ \begin{array}{ccccc} f_{\rm d} & {\rm bubble departure frequency} & \mu & {\rm viscosity} & \\ \hline G & {\rm mass flux} & & \\ g & {\rm gravitational acceleration} & {\rm Subscripts} & \\ h & {\rm heat transfer coefficient} & b & {\rm bubble or bulk} & \\ i_{\rm fg} & {\rm heat of vaporization (latent heat)} & c & {\rm cavity or convective} \\ \hline Ja & {\rm Jacob number} & d & {\rm departure} & \\ k & {\rm thermal conductivity} & e & {\rm effective} & \\ N_{\rm a} & {\rm active nucleation site density} & ev & {\rm evaporation} & \\ N_{\rm fd} & {\rm dimensionless bubble departure frequency} & f & {\rm liquid phase} & \\ N_{\rm fc} & {\rm inverse of dimensionless bubble growth time} & {\rm FC} & {\rm forced convective} & \\ N_{\rm qw} & {\rm inverse of dimensionless bubble waiting time} & g & {\rm vapor phase} & \\ N_{\rm qc} & {\rm dimensionless hast flux} & g & {\rm vapor phase} & \\ N_{\rm qc} & {\rm dimensionless hast flux using bubble departure diame-} & h & {\rm heated} & \\ ter & N_{\rm Rd} & {\rm dimensionless hast flux using bubble departure diame-} & h & {\rm heated} & \\ ter & N_{\rm Rd} & {\rm dimensionless hast flux using cavity diameter} & s & {\rm saturation} & \\ N_{\rm qw} & {\rm dimensionless hast flux using cavity diameter} & s & {\rm saturation} & \\ p & {\rm pressure} & {\rm sub} & {\rm subcooling} & \\ Pr_{\rm f} & {\rm liquid Prandtl number} & W & {\rm waiting} & \\ q'' & {\rm heat flux} & w & {\rm wall} & \\ r & {\rm radius} & x & {\rm coordinate} & \\ Re & {\rm Reynolds number} & y & {\rm coordinate} & \\ \end{array} $	F _{sl}	shear lift force	σ	surface tension
Gmass fluxSubscriptsggravitational accelerationSubscriptshheat transfer coefficientbbubble or bulk i_{fg} heat of vaporization (latent heat)ccavity or convectiveJaJacob numberddeparturekthermal conductivityeeffectiveNaactive nucleation site densityevevaporationNfddimensionless bubble departure frequencyfliquid phaseNrGinverse of dimensionless bubble growth timeFCforced convectiveNqwinverse of dimensionless bubble waiting timegvapor phaseNqCdimensionless single-phase forced convective heat fluxHhydraulicNqGCdimensionless nucleate boiling heat fluxrrelativeNqWwdimensionless nucleate boiling heat fluxrrelativeNqWwdimensionless heat flux using cavity diameterssaturationppressuresubsubcoolingsubcoolingPrfliquid Prandtl numberWwaitingwq''heat fluxxcoordinateReReynolds numberycoordinate	$f_{\rm d}$	bubble departure frequency	μ	viscosity
ggravitational accelerationSubscriptshheat transfer coefficientbbubble or bulk i_{rg} heat of vaporization (latent heat)ccavity or convectiveJaJacob numberddeparturekthermal conductivityeeffectiveNaactive nucleation site densityevevaporationNfddimensionless bubble departure frequencyfliquid phaseNrGinverse of dimensionless bubble growth timeFCforced convectiveNqwinverse of dimensionless bubble waiting timegvapor phaseNqGdimensionless heat fluxgvapor phaseNqGdimensionless nucleate boiling heat fluxrrelativeNqWdimensionless nucleate boiling heat fluxrrelativeNqWdimensionless heat flux using cavity diameterssaturationppressuresubbsubcoolingPrliquid Prandtl numberWwaitingq''heat fluxwwallrradiusxcoordinateReReynolds numberycoordinate	G	mass flux		
hheat transfer coefficientbbubble or bulk i_{fg} heat of vaporization (latent heat)ccavity or convective Ja Jacob numberddeparturekthermal conductivityeeffective N_a active nucleation site densityevevaporation N_{fd} dimensionless bubble departure frequencyfliquid phase N_{fG} inverse of dimensionless bubble growth timeFCforced convective N_{rW} inverse of dimensionless bubble waiting timegvapor phase N_{qQ} dimensionless heat fluxgvapor phase N_{qGC} dimensionless heat flux using bubble departure diame- terhheated N_{qGW} dimensionless nucleate boiling heat fluxrr N_{qW} dimensionless heat flux using cavity diameterssaturation p pressuresubsubcooling Pr_f liquid Prandtl numberWwaiting q'' heat fluxwwall r radiusxcoordinate Re Reynolds numberycoordinate	g	gravitational acceleration	Subscripts	
i_{rg} heat of vaporization (latent heat) c cavity or convective Ja Jacob number d departure k thermal conductivity e effective N_a active nucleation site density ev evaporation N_{fd} dimensionless bubble departure frequency f liquid phase N_{fG} inverse of dimensionless bubble growth timeFCforced convective N_{rw} inverse of dimensionless bubble waiting time G growth N_q dimensionless heat flux g vapor phase N_{qG} dimensionless single-phase forced convective heat flux H hydraulic N_{qW} dimensionless nucleate boiling heat flux r relative N_{qW} dimensionless heat flux using cavity diameter s saturation p pressuresubsubcooling Pr_{f} liquid Prandtl number W waiting q'' heat flux w waiting q'' heat flux x coordinate Re Reynolds number y coordinate	h	heat transfer coefficient	b	bubble or bulk
Ja Jacob number d departure k thermal conductivity e effective N_a active nucleation site density ev evaporation N_{fd} dimensionless bubble departure frequency f liquid phase N_{fG} inverse of dimensionless bubble growth time FC forced convective N_{fW} inverse of dimensionless bubble waiting time G growth N_{q} dimensionless heat flux g vapor phase N_{qFC} dimensionless heat flux using bubble departure diame- ter h heated N_{qNB} dimensionless nucleate boiling heat flux r relative N_{qW} dimensionless heat flux using cavity diameter s saturation p pressuresubsubcooling Pr_{f} liquid Prandtl number W waiting q'' heat flux w wall r radius x coordinate Re Reynolds number y coordinate	$i_{ m fg}$	heat of vaporization (latent heat)	С	cavity or convective
kthermal conductivityeeffective N_a active nucleation site density ev evaporation N_{fd} dimensionless bubble departure frequency f liquid phase N_{fG} inverse of dimensionless bubble growth time FC forced convective N_{fW} inverse of dimensionless bubble waiting time G growth N_{qV} dimensionless bubble waiting time G growth N_{qV} dimensionless heat flux g vapor phase N_{qFC} dimensionless heat flux using bubble departure diame- ter h heated N_{qG} dimensionless nucleate boiling heat flux r relative N_{qW} dimensionless heat flux using cavity diameter s saturation p pressuresubsubcooling r P_{rf} liquid Prandtl number W waiting q'' heat flux w wall r radius x coordinate Re Reynolds number y coordinate	Ja	Jacob number	d	departure
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k	thermal conductivity	е	effective
$N_{\rm fd}$ dimensionless bubble departure frequencyfliquid phase $N_{\rm fG}$ inverse of dimensionless bubble growth timeFCforced convective $N_{\rm fW}$ inverse of dimensionless bubble waiting timeGgrowth $N_{\rm q}$ dimensionless heat fluxgvapor phase $N_{\rm qFC}$ dimensionless single-phase forced convective heat fluxHhydraulic $N_{\rm qG}$ dimensionless heat flux using bubble departure diame- terhheated $N_{\rm qNB}$ dimensionless nucleate boiling heat fluxrrelative $N_{\rm qW}$ dimensionless heat flux using cavity diameterssaturationppressuresubsubcooling $Pr_{\rm f}$ liquid Prandtl numberWwaitingq''heat fluxwwailrradiusxcoordinateReReynolds numberycoordinate	Na	active nucleation site density	ev	evaporation
$N_{\rm fG}$ inverse of dimensionless bubble growth timeFCforced convective $N_{\rm fW}$ inverse of dimensionless bubble waiting time G growth $N_{\rm q}$ dimensionless heat flux g vapor phase $N_{\rm qFC}$ dimensionless single-phase forced convective heat flux H hydraulic $N_{\rm qG}$ dimensionless heat flux using bubble departure diame- ter h heated $N_{\rm qNB}$ dimensionless nucleate boiling heat flux r relative $N_{\rm qW}$ dimensionless heat flux using cavity diameter s saturation p pressuresubsubcooling $Pr_{\rm f}$ liquid Prandtl number W waiting q'' heat flux w wail r radius x coordinate Re Reynolds number y coordinate	$N_{\rm fd}$	dimensionless bubble departure frequency	f	liquid phase
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$N_{\rm fG}$	inverse of dimensionless bubble growth time	FC	forced convective
$N_{\rm q}$ dimensionless heat fluxgvapor phase $N_{\rm qFC}$ dimensionless single-phase forced convective heat fluxHhydraulic $N_{\rm qG}$ dimensionless heat flux using bubble departure diame- terhheated $N_{\rm qNB}$ dimensionless nucleate boiling heat fluxrrelative $N_{\rm qW}$ dimensionless heat flux using cavity diameterssaturation p pressuresubsubcooling $Pr_{\rm f}$ liquid Prandtl numberWwaiting q'' heat fluxwwall r radiusxcoordinate Re Reynolds numberycoordinate	$N_{\rm fW}$	inverse of dimensionless bubble waiting time	G	growth
N_{qFC} dimensionless single-phase forced convective heat fluxHhydraulic N_{qG} dimensionless heat flux using bubble departure diame- terhheated N_{qNB} dimensionless nucleate boiling heat fluxrrelative N_{qW} dimensionless nucleate boiling heat fluxrrelative N_{qW} dimensionless heat flux using cavity diameterssaturationppressuresubsubcooling Pr_{f} liquid Prandtl numberWwaitingq''heat fluxwwailrradiusxcoordinateReReynolds numberycoordinate	$N_{\rm q}$	dimensionless heat flux	g	vapor phase
N_{qG} dimensionless heat flux using bubble departure diame- terhheated N_{qNB} nucleate boilingnucleate boiling N_{qNB} dimensionless nucleate boiling heat fluxrrelative N_{qW} dimensionless heat flux using cavity diameterssaturation p pressuresubsubcooling Pr_{f} liquid Prandtl numberWwaiting q'' heat fluxwwailrradiusxcoordinateReReynolds numberycoordinate	N_{qFC}	dimensionless single-phase forced convective heat flux	Н	hydraulic
terNBnucleate boilingNqNBdimensionless nucleate boiling heat fluxrrelativeNqWdimensionless heat flux using cavity diameterssaturationppressuresubsubcoolingPrfliquid Prandtl numberWwaitingq"heat fluxwwailrradiusxcoordinateReReynolds numberycoordinate	N_{qG}	dimensionless heat flux using bubble departure diame-	h	heated
N_{qNB} dimensionless nucleate boiling heat flux r relative N_{qW} dimensionless heat flux using cavity diameter s saturation p pressuresubsubcooling Pr_f liquid Prandtl number W waiting q'' heat flux w waill r radius x coordinate Re Reynolds number y coordinate		ter	NB	nucleate boiling
NqWdimensionless heat flux using cavity diameterssaturationppressuresubsubcoolingPrfliquid Prandtl numberWwaitingq"heat fluxwwaillrradiusxcoordinateReReynolds numberycoordinate	N_{qNB}	dimensionless nucleate boiling heat flux	r	relative
ppressuresubsubcoolingPrfliquid Prandtl numberWwaitingq"heat fluxwwallrradiusxcoordinateReReynolds numberycoordinate	N_{qW}	dimensionless heat flux using cavity diameter	S	saturation
Prfliquid Prandtl numberWwaitingq"heat fluxwwallrradiusxcoordinateReReynolds numberycoordinate	р	pressure	sub	subcooling
q"heat fluxwwallrradiusxcoordinateReReynolds numberycoordinate	$Pr_{\rm f}$	liquid Prandtl number	W	waiting
rradiusxcoordinateReReynolds numberycoordinate	q''	heat flux	w	wall
<i>Re</i> Reynolds number <i>y</i> coordinate	r	radius	x	coordinate
	Re	Reynolds number	у	coordinate

ena in subcooled boiling condition, which falls in the laminar and turbulent regimes.

Literature review shows that bubble departure frequency at pool boiling have been studied extensively. Jokob [3] found that the product of bubble departure frequency and departure diameter to be a constant. Zuber [4] correlated this constant to be half of the bubble rising velocity in a gravitational field. Ivey [5] offered three correlations with the product of departure frequency and different power of departure diameter for three regions: (1) hydrodynamic region in which buoyancy and drag forces predominate; (2) transition region where buoyancy, drag, and surface tension forces are in the same order; and (3) thermodynamic region where bubble growth dominates. In literature, researchers also attempted to mechanistically model the bubble departure frequency in pool boiling. The first step is to divide the reciprocal of departure frequency, i.e., one nucleation cycle, into two parts. In one nucleation cycle, there exists a waiting time, i.e., t_W , defined as the period from the moment of the former bubble departs to the moment of the current bubble nucleates, and a growth time, $t_{\rm G}$, which is defined as the period from the moment of bubble appearance until the moment of bubble departure. Han and Griffith [6] proposed that the waiting time from the criterion of bubble nucleation and potential flow theory. While for bubble growth time, Hatton and Hall [7] offered a model by taking account of the bubble departure diameter and thermally-controlled bubble growth rate.

Recently, several investigations have been performed on the bubble departure frequency in convective boiling. Thorncroft et al. [8] reported bubble waiting time and departure diameter of electronic fluid FC-87 under vertical up-flow and down-flow boiling in a 12.7 mm ID square duct with one side heated by a 30 cm-length nichrome strip. The data were captured at mass flux varying from 190 to 666 kg/m² s, heat flux changing from 1.32 to 14.6 kW/m², and bulk subcooling ranging from 1.0 to 5.0 °C. Basu et al. [9,10] measured waiting time, growth time, departure size and frequency in an upward-vertical subcooled flow boiling facility using water as working fluid. The experimental data were taken at pressure of 0.103 MPa, mass fluxes from 235 to 684 kg/m² s, and heat flux changing from 160 to 963 kW/m². The test section is almost square in cross section with 16.33 cm² in flow area. The heated surface is a 3.175 cm \times 30.5 cm flat copper plate with contact angle varying from 30° to 90°. The waiting time was correlated against wall superheat, while the growth time was correlated with bulk subcooling, bubble departure diameter, and superheated liquid layer. It shall be noted that the correlation is proposed for limited test scope and heated surface. Podowski et al. [11] proposed mechanistic models for both waiting time and growth time. However, the model has not been directly validated.

In summary, few works have been attempted to examine the existing correlations and models of bubble departure frequency in forced convective subcooled boiling conditions, where both experimental and analytical works are deficient. Hence the purpose of this paper is to study the bubble departure frequency in vertical upward forced-convective subcooling boiling flow. The investigation will be carried out by performing experimental test, and analyzing the existing experimental data and model/correlation in literature.

Download English Version:

https://daneshyari.com/en/article/660067

Download Persian Version:

https://daneshyari.com/article/660067

Daneshyari.com