Accepted Manuscript

Embedding leaf tissue in graphene ink to improve signals in electrochemistry-based chemotaxonomy

Li Fu, Yuhong Zheng, Pengchong Zhang, Jiangwei Zhu, Haoyang Zhang, Luxi Zhang, Weitao Su

PII: S1388-2481(18)30123-1

DOI: doi:10.1016/j.elecom.2018.05.018

Reference: ELECOM 6215

To appear in: Electrochemistry Communications

Received date: 2 May 2018 Revised date: 15 May 2018 Accepted date: 15 May 2018

Please cite this article as: Li Fu, Yuhong Zheng, Pengchong Zhang, Jiangwei Zhu, Haoyang Zhang, Luxi Zhang, Weitao Su, Embedding leaf tissue in graphene ink to improve signals in electrochemistry-based chemotaxonomy. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Elecom(2017), doi:10.1016/j.elecom.2018.05.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Embedding leaf tissue in graphene ink to improve signals in electrochemistry-based chemotaxonomy

Li ${\rm Fu}^{1*}$, Yuhong Zheng 2* , Pengchong Zhang 3 , Jiangwei Zhu 4 , Haoyang Zhang 1 Luxi Zhang 1 and Weitao Su 1

Corresponding authors: Li Fu, Yuhong Zheng Email: fuli@hdu.edu.cn; zhengyuhong@cnbg.net

Abstract: We propose a method for the electrochemical identification of plants by embedding leaf tissue into graphene deposited on a screen-printed electrode (SPE). The embedding process significantly enhanced the electrochemical signals, which made the SPE sufficiently sensitive to record information about electro-active compounds in plants. In this work, five *Lycoris* herbs have been used as examples to evaluate the feasibility of the proposed technique. Multidimensional pattern recognition was successfully established for plant identification. In addition, the recorded "electrochemical fingerprints" provided valuable taxonomic information, demonstrating the enormous potential of the technique for plant chemotaxonomy.

Keywords: Chemotaxonomy; Plant identification; Graphene ink; Screen printed electrode; Multivariate chemometric analysis

1. Introduction

Plant taxonomy is the oldest and most comprehensive branch of plant science. Classical taxonomy is based on morphological and anatomical studies of specimens, which is one of the most basic subjects in biology. Plant taxonomy relies heavily on evidence from many other disciplines, and new evidence is continually being added to improve previous research results [1, 2]. For example, chemotaxonomy is a method of studying plant groups and their relationships at the molecular level [3]. In recent years, the chemical division of plant groups has been widely studied due to the development of various separation and analytical methods which have provided many new lines of

¹ College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P.R. China

² Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, P.R. China.

³ Hangzhou Botanical Garden, Hangzhou, Zhejiang, 310013, P.R. China

⁴ Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China

Download English Version:

https://daneshyari.com/en/article/6600742

Download Persian Version:

https://daneshyari.com/article/6600742

<u>Daneshyari.com</u>