Accepted Manuscript

Flame-like Ni(OH)2 strongly promotes the dissociation of water and can be used to produce an excellent hybrid electrocatalyst for the hydrogen evolution reaction in alkaline media

Yun Zhou, Chongfeng Sun, Xigang Yang, Gang Zou, Hongjing Wu, Shengqi Xi

PII: S1388-2481(18)30109-7

DOI: doi:10.1016/j.elecom.2018.05.010

Reference: ELECOM 6207

To appear in: Electrochemistry Communications

Received date: 11 March 2018
Revised date: 5 May 2018
Accepted date: 7 May 2018

Please cite this article as: Yun Zhou, Chongfeng Sun, Xigang Yang, Gang Zou, Hongjing Wu, Shengqi Xi, Flame-like Ni(OH)2 strongly promotes the dissociation of water and can be used to produce an excellent hybrid electrocatalyst for the hydrogen evolution reaction in alkaline media. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Elecom(2017), doi:10.1016/j.elecom.2018.05.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Flame-like Ni(OH)₂ strongly promotes the dissociation of water and can be used

to produce an excellent hybrid electrocatalyst for the hydrogen evolution

reaction in alkaline media

Yun Zhou, Chongfeng Sun, Xigang Yang, Gang Zou, Hongjing Wu and Shengqi Xi*

State Key Laboratory for Mechanical Behavior of Materials, School of Materials

Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China

* Corresponding author, Email address: xishq@xjtu.edu.cn

Abstract

In this communication, Ni(OH)2 with a flame-like morphology was successfully

electrodeposited on nickel foam (NF) using a ZnO buffer layer. The flame-like

Ni(OH)₂/NF exhibited efficient activity for the hydrogen evolution reaction (HER) in

alkaline media, requiring overpotentials of only 56.4 and 115.8 mV to reach current

densities of 10 and 100 mA·cm⁻², respectively, with a low Tafel slope of 52.8 mV

dec⁻¹. These results are nearly comparable to those of commercial Pt/C. The

significant improvement in HER activity could be attributed to the flame-like

morphology of Ni(OH)₂, which may strongly promote the dissociation of water and

accelerate the formation of Had. This work also provides a new approach to designing

efficient hybrid catalysts for the hydrogen evolution in alkaline media.

Key words: HER; alkaline media; flame-like Ni(OH)₂; water dissociation

1

Download English Version:

https://daneshyari.com/en/article/6600777

Download Persian Version:

https://daneshyari.com/article/6600777

<u>Daneshyari.com</u>