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a b s t r a c t

This investigation reports on a stability analysis of the quiescent state within a horizontal layer of a
micropolar fluid. The horizontal boundaries are considered rigid–rigid, rigid–free or free–free. Thermal
boundary conditions of the Neumann type are applied on the boundaries of the system. The critical Ray-
leigh and Marangoni numbers for the onset of supercritical convection of micropolar are predicted ana-
lytically on the basis of the parallel flow approximation. The onset of motion is found to depend on the
materials parameters K, B, k and the micro-rotation boundary condition n. Furthermore, a linear stability
analysis is conducted yielding numerically the critical Rayleigh and Marangoni numbers for the onset of
motion from the rest state. A good agreement is observed between the analytical model and the numer-
ical simulations.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The micropolar fluid theory, which deals with fluids in which
gyrational effects are important, was developed by Eringen [1–4]
in order to describe some physical systems which do not satisfy
the Navier–Stokes model. Micropolar fluids, which posses inertia
not only for translation but also for rotation, are able to describe
the behavior of colloidal solutions, suspension solutions, the extru-
sion of polymer fluids, continuous casting glass–fiber, animal
bloods, cooling of a metallic plate in a bath production, paper pro-
duction and metal extraction.

The first study concerning thermal instability of a micropolar
fluid layer heated from below, with free upper and lower bound-
aries, seems to be due to Ahmadi [5]. The existence of cellular con-
vection at the onset of convection was demonstrated by this
author. Rama Rao [6] studied the onset of convection of a heat con-
ducting micropolar fluid layer confined between two horizontal
rigid boundaries. The heat induced by microrotation leads to the
onset of instability not only due to adverse temperature gradients
but also for positive ones. The possibility of overstable motions of
micropolar fluids heated from below has been investigated by
Pérez-Garcia and Rubi [7]. It was found that such motions are pos-
sible only for fluids with a very large coupling parameter between
the spin flux and the heat flux. The instability of rotating micropo-
lar fluids has been investigated by Sastry and Ramamohan [8]. The
effects of a magnetic field and nonuniform temperature profiles on
Marangoni convection in micropolar fluids confined between a

lower rigid isothermal boundary and an upper free, constant heat
flux, boundary was investigated by Rudraiah et al. [9]. It was dem-
onstrated by these authors that micropolar fluids heated from be-
low are more stable when compare to the pure viscous fluid
situation. Siddheshwar and Pranesh [10] investigated the influence
of suction-injection on the linear stability of Rayleigh–Benard
Marangoni convection in a horizontal layer with an upper free
boundary. The micropolar fluid layer was found to be more stable
than the classical pure fluid layer. The effects of through flow and
magnetic field on the onset of Benard convection in a horizontal
layer of micropolar fluid confined between two rigid, isothermal
and micro-rotation free, boundaries have been studied by Nar-
asimha Murty [11]. The critical Rayleigh number was predicted
on the basis of a single-term Galerkin technique. Rayleigh–Bénard
convection in a micropolar ferromagnetic fluid has been investi-
gated analytically by Abraham [12] for a layer with free–free, iso-
thermal, spin-vanishing magnetic boundaries. It was demonstrated
that the micropolar ferromagnetic fluid layer heated from below is
more stable as compared to the Newtonian ferromagnetic fluid.
Narasimha Murty [13] investigated the effects of through flow
and uniform magnetic field on the onset of Marangoni convection
in micropolar fluids. Sharma and Gupta [14] performed a study of
the stability of thermal convection in micropolar fluids under the
influence of a uniform vertical rotation field. It was reported that
Rayleigh number for the case of overstability and stationary con-
vection increases with increase of rotation parameters and de-
creases with increase of micropolar coefficients. The effect of a
non-uniform basic temperature gradient on the onset of Marang-
oni convection in a horizontal micropolar fluid layer was
considered by Melviana et al. [15]. It was assumed that the layer
is bounded below by a rigid plate and above by a non-deformable
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free surface subjected to a constant heat flux. At these boundaries
the microrotation is assumed to be vanished. The influence of var-
ious parameters on the onset of convection is discussed. The effect
of a magnetic field on the onset of Marangoni convection in micro-
polar fluid has been considered by Mahmud et al. [16]. The pres-
ence of the magnetic field was found to always have a stability
effect of increasing the critical Marangoni number. A linear stabil-
ity analysis was performed by Idris et al. [17] to study the effect of
non-uniform basic temperature gradients on the onset of Bénard–
Marangoni convection in a micropolar fluid. The influence of vari-
ous parameters on the onset of convection has been analyzed by
these authors. It was found that the presence of micron-sized sus-
pended particles delays the onset of convection. Recently, an ana-
lytical and numerical study of natural convection in a shallow
cavity filled with a micropolar fluid has been reported by Alloui
and Vasseur [18]. Among other results, the critical Rayleigh for
the onset of convection was obtained in a close form in terms of
the governing parameters of the problem.

The aim of the present paper is to study the effects of various
hydrodynamic boundary conditions such as free–free, rigid–free
on the onset of Bénard–Maragoni convection of a horizontal layer
of micropolar fluid. The critical conditions for the onset of convec-
tion shall be determined by both analytical and numerical meth-
ods. The paper is organized as follows. In the next sections, the
formulation of the problem is presented. A linear stability analysis
is conducted to predict numerically the critical Rayleigh and
Marangoni numbers for the onset of motion from the rest state.
An approximate analytical solution, based on the parallel flow
approximation, is then proposed. The last section contains some
concluding remarks.

2. Mathematical formulation

The configuration considered in this study is a horizontal shallow
cavity, of thickness H0 and width L0 filled with a micropolar fluid (see
Fig. 1). The origin of the coordinate system is located at the centre of

the cavity with x0 and y0 being the horizontal and vertical coordi-
nates, respectively. The cavity is insulated on the sides and heated
from the bottom by a uniform heat flux q0. All the boundaries of
the cavity, except the upper free surface, are supposed to be rigid
and impermeable. The upper free surface is assumed to be flat and
subjected to a surface tension r which varies linearly with temper-
ature as r ¼ r0½1� cTðT

0 � T 00Þ�where the subscript 0 refers to con-
ditions at a reference state and cT is the thermal surface tension
gradient. The micropolar fluid is assumed to satisfy the Boussinesq
approximation. The density variation with temperature is described
by the state equation q ¼ q0½1� b0TðT

0 � T 00Þ� where q0 is the fluid
mixture density at temperature T 0 ¼ T 00 and b0T is the thermal expan-
sion coefficient, respectively.

The governing equations, which describe the system behavior
are conservation of momentum, microrotation and energy, are
given below in terms of the stream function W as (see for instance
[19]):

@r2W
@t

þ JðW;r2WÞ ¼ Prð1þ KÞr2ðr2WÞ þ PrKr2N � PrRa
@T
@x
ð1Þ

Nomenclature

A aspect ratio of the cavity, L0/H0

Ac wave length of the convection cell, p/kc

B micro-inertia parameter, H02/j
C constant temperature gradient in x-direction
g gravitational acceleration
H0 height of fluid layer
j micro-inertia per unit mass
k thermal conductivity
kc wave number
K vortex viscosity parameter, j/l
L0 width of fluid layer
Ma Marangoni number, r0cTDT0H0/al
Mac critical Marangoni number, Eq. (41)
Nu Nusselt number, Eq. (7)
N dimensionless angular velocity, N0H02/a
n dimensionless micro-gyration parameter equation (4)
Pr Prandtl number, m/a
q0 constant heat flux per unit area
Ra thermal Rayleigh number, gb0TDT 0H03=am
Rac critical Rayleigh number, Eq. (24)
t dimensionless time, t0a/H02

T dimensionless temperature, ðT 0 � T 00Þ=DT 0

u dimensionless velocity in x-direction, u0H0/a
v dimensionless velocity in y-direction, v0H0/a

x dimensionless coordinate axis, x0/H0

y dimensionless coordinate axis, y0/H0

Greek symbols
a thermal diffusivity
b0T thermal expansion coefficient
cT thermal surface tension gradient
l dynamic viscosity
m kinematic viscosity of fluid, l/q
k material parameter, c/(lj)
q density of fluid
r fluid surface tension
W dimensionless stream function, W 0/a
c spin gradient viscosity
j vortex viscosity

Subscript
0 reference state
c refers to critical conditions

Superscript
0 refers to dimensional variable
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Fig. 1. Schematic diagram of the problem domain and coordinate system.
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