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a b s t r a c t

In this paper we explore the use of vascular design that provides cooling and mechanical strength at the
same time. We illustrate the concept with a circular plate vascularized with embedded channels. The
cooling fluid enters to the plate from the center or from the rim, and leaves after it cools the plate down
to an allowable temperature level. The vascular cooling channels also affect the mechanical strength of
the plate. We simulated numerically the thermofluid and mechanical behavior for three different struc-
tures; radial, dendrites with one pairing level and dendrites with two pairing levels. We found that for a
given set of conditions (applied pressure difference, coolant inlet position, and number of the cooling
channels) there is one configuration that is best; however, there is no single configuration that is best
for all conditions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cooling and mechanical strength requirements place limits on
the improvement of many advanced technologies, from electronic
packages to structures for future air vehicles. Although the
strength of the structure can be increased by adding more and
stronger material, the challenge is to reduce the volume and
weight of the structure. At the same time, the structure must be
able to resist the effect of sudden heating, volumetrically or on
its envelope. The design challenge is to increase structural strength
while decreasing the maximum temperature in the volume, and
reducing the volume.

Even though these objectives seem to be in conflict, the ‘‘flow of
stresses’’ concept of constructal theory shows how to achieve
mechanical strength by morphing the design to meet these two
objectives and using less material [1]. The approach is to allow
the structure to change freely by placing the material in places
where stresses flow with fewer strangulations. This concept is
the same as in the constructal design of thermofluid architectures:
the design is free to change such that more flow volume is placed
where it is needed. The current literature focuses mostly on ther-
mofluid design [2–9] and smart features such as self-cooling and
self-healing [10–15], and in a few instances mechanical strength
was used as a design objective [16,17].

In the present study the flow volume houses three types of
flows at the same time: stresses, fluid, and heat. We seek architec-
tures that facilitate these three flows at the same time. The emerg-
ing designs are ‘‘designed porous structures’’ that consist of radial
and tree-shaped cooling channels.

2. Hess–Murray’s law: temperature dependence

Dendritic flow structures offer less resistance when bifurcations
are accompanied by optimal step-changes in diameters, in accord
with the Hess–Murray rule (e.g. Ref. [1]). This design rule applies
to isothermal systems, and to fluids with temperature independent
properties. Here we review concept by assuming the more general
case of temperature dependent properties. Additional generality is
provided by the assumption that the mother tube is continued by n
identical daughter tubes, and by the fact that the flow regime can
be laminar or turbulent. The fluid volume is fixed, and it is used as
constraint in the search for the optimal mother/daughter diameter
ratios. The pressure drop formula for laminar flow is

DP ¼ Cmi _mi
Li

D4
i

ð1Þ

where C = 128/p, and mi is the kinematic viscosity corresponding to
the mean temperature Tme =

R
T dV/

R
dV. If one tube branches into n

identical tubes, the total flow volume and pressure drop are
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DP ¼ Cm1 _m1
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where _m2 ¼ _m1=n. The diameter ratio for minimum DP is

D1

D2
¼ n1=3 m1

m2
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ð4Þ

The case of fully developed turbulent flow is analyzed similarly.
The pressure drop formula for turbulent flow is

DP ¼ CT _m2
i

qi

Li
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i

ð5Þ

where CT = 32f/p2, f is the friction factor which is constant in the
fully rough regime, and qi is the density of the fluid corresponding
to Tme. The total fluid volume and pressure drop are

V ¼ pD2
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DP ¼ CT _m2
1
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where _m2 ¼ _m1=n. The optimal diameter ratio is

D1

D2
¼ n3=7 q2

q1

� �1=7

ð8Þ

In summary, the effect of variable properties is felt through the ra-
tios ðm1=m2Þ1=6 and ðq2=q1Þ

1=7 for laminar flow and turbulent flow,
respectively. In the following work, the temperature variations are
assumed to be small enough so that at every branching point the ra-
tios ðm1=m2Þ1=6 and ðq2=q1Þ

1=7 are sufficiently close to 1.

3. Model

We relied on a numerical model of the thermofluid and
mechanical behavior of the circular plate. The diameter and thick-
ness of the plate are D and H, and their ratio is fixed D/H = 10. The
total volume is fixed, and so is the volume of the channels. The
plate is subjected to uniformly distributed force and uniform heat
flux, both acting from below, Fig. 1. Because the plate is thin, the
heating from below is also an adequate approximation of situa-
tions where the heating is distributed volumetrically. The fluid
flow is governed by the mass conservation and momentum equa-
tions, which for incompressible and steady flow are:
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Here x, y and z are the coordinates, u, v and w are the velocity com-
ponents corresponding to these coordinates, and P, m and q are the
pressure, kinematic viscosity and fluid density. The temperature
distribution is found by solving the energy equation
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where cP is the specific heat at constant pressure, T is the tempera-
ture, and k is the fluid thermal conductivity.

Nomenclature

C laminar flow pressure drop constant
CT turbulent flow pressure drop constant
Cijkl elasticity tensor, Eq. (15)
cP specific heat at constant pressure, J kg�1 K�1

D1, D2 duct diameter, Eq. (2)
dm diameter of the cooling ducts, m, Figs. 1, 5 and 7
E elasticity modulus
f friction factor
F volume forces, N
H plate thickness, m, Fig. 1
k thermal conductivity
K second order tensor, Eq. (19)
L duct length, m
_m mass flow rate, kg s � 1

_em volumetric flow rate, m3 s � 1

n number of the cooling ducts
P pressure, N m�2

Pr Prandtl number, Eqs. (31)–(33)
q00 heat flux, W m�2

R plate radius, m, Figs. 1, 5 and 7
r, r1, r2 the distance from the center of the plate to the pairing

junctions, m, Figs. 5 and 7
rx, ry, rz displacement, m
T temperature, K
u, v, w velocity components, m s�1

V volume
W normal velocity of fluid enters from the inlet or leaves

from the outlet, m s�1

x, y, z coordinates, m

Greek symbols
a thermal diffusivity, m2 s�1

c Poisson ratio, Eq. (19)
DP pressure difference
ekl strain tensor, Eq. (15)
l dynamic viscosity, kg m�1 s�1

m kinematic viscosity, m2 s�1

q density, kg m�3

r normal stress, N m�2

rij stress tensor, Eqs. (14) and (15)
s shear stress, N m�2

/ shear strain, Eq. (21)

Subscript
i rank of ducts
in inlet
m cooling duct pattern
max maximum
me mean
ref reference
s solid
st mechanical
x, y, z coordinates

Superscript
� dimensionless
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