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a b s t r a c t

A numerical approximation of the Green’s function equation based on a heat-flux formulation is given. It
is derived by assuming as a functional form of the surface heat flux a stepwise variation with space and
time. The obtained approximation is very important in investigation of the inverse heat conduction prob-
lems (IHCPs) because it gives a convenient expression for the temperature in terms of the heat flux com-
ponents. Additionally, it is very important for the unsteady surface element (USE) method which is a
modern boundary discretization method. Green’s function approximate solution equation (GFASE) also
creates ‘naturally’ fixed groups or modules of work elements called ‘‘building blocks’’ that may be added
together to obtain space and time values of temperature. In the current case, they are subject to a partial
heating by an applied surface heat flux. The ‘‘building block’’ solution can be derived by using the various
analytical and numerical approaches available in heat conduction literature though the exact analysis is
preferable, as discussed in the text. Poorly-convergent series deriving from Green’s functions approach
are replaced by closed-form algebraic solutions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A transient, multi-dimensional, heat conduction problem can be
solved using analytical (exact and approximate) [1,2] and numeri-
cal methods [3,4].

Two types of exact analytical procedures are available in litera-
ture. One is based on a differential formulation of the mathemati-
cal model and includes the traditional methods of separation of
variables (SOV) and Laplace transforms [1]. The other is based on
an integral form of the model and uses Duhamel’s theorem [1,2]
and Green’s functions [1,2] both of which yield convolution-type
integrals. These two types of exact solutions often contain infinite
series, special functions, transcendental equations for eigenvalues,
etc., so that their numerical computation may present a formidable
task. Another exact analysis which derives its basis from the clas-
sical SOV method is the integral-transform technique [1].

Approximate analytical solutions [1] such as integral method,
Galerkin method, and so on, are useful when the exact analysis is
not applicable. For example, when the geometries of the heat-
conducting bodies are complicated and/or the partial differential
equation and the boundary conditions are nonlinear, that is, func-
tions of temperature. In this case, in fact, only a very few special
cases can be solved exactly.

Numerical methods [3,4] are useful for solving problems involv-
ing nonlinearities, complex geometries, complicated boundary
conditions such as radiation conditions or mixed discontinuous
boundary value problems [5]. They treat as their basic unknowns
the values of the temperature at discrete points of the domain
(called the ‘grid’ points) providing a set of algebraic equations for
these unknowns. Similarly to the exact analysis, there are two
types of numerical procedures. One is based on a differential for-
mulation of the transient heat conduction equation (linear or non-
linear) and involves finite difference (FD) and finite element (FE)
methods. An alternative method is the finite control-volume for-
mulation. The other is based on an integral form of the same equa-
tion and employs Duhamel’s theorem and Green’s functions (GF)
both of which are only valid for linear cases. As Duhamel’s theorem
can be thought of as a boundary condition term of the GF equation
(i.e., a special case of the general method of GF), only Green’s func-
tion method is here given in a numerical approximate form. A
modern technique which utilizes Duhamel’s integral or GF
approach for solving connected basic geometries is the so-called
unsteady surface element (USE) method [2, Chapter 12]. This treat-
ment is one of the few to base the solution on GFs. Another Green’
function-based numerical method is the well-established bound-
ary element method (BEM) [6,7].

Only a tiny fraction of the range of practical problems can be
solved in an exact closed-form. Notwithstanding this, the develop-
ment of exact analytic solutions is relevant for verification pur-
poses of large numerically based codes [8–11]. These solutions,
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in fact, not only can provide more accurate values of temperature
and heat flux components within the domain of interest but their
correctness can also be checked by means of intrinsic verification
methods [2,12]. Also, they provide a better insight to the physical
significance of various parameters affecting a given problem than
a purely numerical solution.

The various direct (analytical and numerical) approaches de-
scribed briefly above are the first stage of solution procedures for
solving the inverse heat conduction problems (IHCPs) [13]. Among
them, the numerical approximate form of the Green’s function
equation based on a heat-flux formulation can be relevant in inves-
tigation of the IHC problems because it gives a convenient expres-
sion for the temperature in terms of the unknown heat flux
components (Sections 2 and 3). Also, it states that the temperature
or heat flux computation employs only one basic ‘‘building block’’
solution, which is the solution of a direct problem subject to a par-
tial heating by a boundary condition of Neumann type (Section 4).

As the above solution is not available in the literature [1,2,14], it
is derived in the paper by exact analysis using Green’s functions [2]
and routinely evaluated numerically as integrating part of the
same analysis (Sections 5 and 6). An exact analytical procedure is
used since the numerical approximation of the GF equation is
based on differences (close subtractions) of the building block solu-
tions in both space and time, as discussed in Section 4. These dif-
ferences, in fact, require very accurate values of the temperature,
in particular when the space and time intervals chosen for approx-
imating the surface heat flux are very small. However, the compu-
tational time is greatly reduced by using analytical solutions [15].

Effective procedures based on insights of Morse and Feshbach
[16] and Beck et al. [17] allow then the poorly-convergent series
derived for the steady-state case to be replaced by closed-form
algebraic solutions. The algebraic forms remove the convergence
problem associated with the series solution, can prove helpful in
verification of numerical solutions [8–11] and are more insightful
than series solutions (Sections 6.1 and 6.2). Finally, a numerical
example is given to show how the proposed procedure works (Sec-
tion 7).

2. Steady-state problem

Consider a plate of thickness L along x and semi-infinite in the
y-direction with temperature-independent properties. The plate
is thermally insulated at y = 0, is kept at zero temperature at x = L
and is subject to a time-independent heat flux at its boundary sur-
face x = 0 (nonhomogeneous boundary condition of the 2nd kind).

For convenience, this heat flux is assumed as a function of one
space coordinate only, that is, qx(0,y) = q(y) and is applied over a fi-
nite space interval y 2 [0,yJ]. A schematic of this two-dimensional
steady-state problem denoted by X21B(y-)0Y20B0 is given in
Fig. 1a; in the notation, X and Y denote the x- and y- directions,
respectively, and ‘‘(y-)’’ indicates an arbitrary space function along
y. (See more detail in Ref. [2, Chapter 2] for the numbering system
devised by Beck, et al.).

Its mathematical formulation is

@2T
@x2 þ

@2T
@y2 ¼ 0; ð1aÞ

� k
@T
@x

� �
x¼0
¼ qðyÞ TðL; yÞ ¼ 0; ð1bÞ

@T
@y

� �
y¼0
¼ 0 Tðx; y!1Þ ¼ finite: ð1cÞ

One way to treat this problem is to assume a functional form of the
surface heat flux variation with y (function specification method)
[13]. A simple way to approximate an arbitrary q(y) curve is to di-
vide the same curve into a number of equally spaced intervals,
Dy, and to substitute a uniform heat flux within each of these inter-
vals for the real q(y). This gives the stepwise profile sketched in
Fig. 1b where qj (jth heat flux component) is an approximation for
q(y) between yj�1 = (j � 1)Dy and yj = jDy (with j = 1,2, . . . , J). The
heat flux qj may be identified with the space coordinate
yj�1/2 = (j � 1/2)Dy, that is, qj = q(yj�1/2), where yj�1/2 is the coordi-
nate of the grid point (j � 1/2).

Another type of approximation of q(y) is the linear elements
(piecewise-linear profile) which can represent a q(y) curve more
accurately than the constant elements. This accuracy is gained,
however, at the expense of a more complex treatment. Other pos-
sible approximations are the use of parabolas, cubics, cubic splines,
or exponentials.

However, the main case considered is the simplest one, that is,
the uniform element approximation of Fig. 1b. This is consistent
with the various numerical approaches described in Section 1
which are based on either differential or integral forms of the tran-
sient heat conduction model. An integral formulation employing
Green’s functions is here used.

Then, the solution to the linear problem here of interest may be
taken as [2, p. 225]

Tðx; yÞ ¼ 1
k

Z yM

y0¼0
qðy0ÞGX21Y20ðx; y; x0 ¼ 0; y0Þdy0; ð2Þ

Nomenclature

G Green’s function (subscript designates the boundary
conditions)

k thermal conductivity
L plate thickness
q heat flux
t time coordinate
T temperature
W0 heating region
x, y space coordinates
Xn

j second cross derivative of temperature in space and
time, Xn

j ¼ rjrnhn
j

Greek symbols
a thermal diffusivity
bm mth dimensionless eigenvalue, kmL (m = 1,2,3, . . .)
Dt time interval

Dy space interval along y
hn

j temperature at t = nDt due to a unit heat flux applied
over the region y 2 [0, jDy]

rjh
n
j first difference (or derivative) of the temperature hn

j in
space (backward difference)

rnhn
j first difference (or derivative) of the temperature hn

j in
time (backward difference)

Superscripts
� dimensionless variable (defined in the text)

Subscripts
j integer index for space (j = 1,2, . . . , J)
n integer index for time (n = 1,2, . . . ,N)
x, y x- and y-directions
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