Accepted Manuscript

Monoethanolamine-enabled electrochemical detection of H2S in a hydroxyl-functionalized ionic liquid

Qing Huang, Wei Li, Tian Wu, Xiaoling Ma, Kai Jiang, Xianbo Jin

PII:	S1388-2481(17)30359-4
DOI:	https://doi.org/10.1016/j.elecom.2017.12.024
Reference:	ELECOM 6120
To appear in:	Electrochemistry Communications
Received date:	15 December 2017
Revised date:	21 December 2017
Accepted date:	21 December 2017

Please cite this article as: Qing Huang, Wei Li, Tian Wu, Xiaoling Ma, Kai Jiang, Xianbo Jin, Monoethanolamine-enabled electrochemical detection of H2S in a hydroxyl-functionalized ionic liquid. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Elecom(2017), https://doi.org/10.1016/j.elecom.2017.12.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Monoethanolamine-enabled electrochemical detection of H₂S in a

hydroxyl-functionalized ionic liquid

Qing Huang^{a,b}, Wei Li^a, Tian Wu^{a,b*}, Xiaoling Ma^b, Kai Jiang^c, and Xianbo Jin^{a*}

^a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 P.R. China

^bCollege of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205 P.R. China

^c School of Materials Science and Engineering, Huazhong University of Science and Technology,

Wuhan, Hubei 430074, China

*Corresponding authors. Tel & Fax +86 27 68756319

E-mail address: twu@whu.edu.cn(T. W.); xbjin@whu.edu.cn (X. B. J)

Abstract

There is much interest in developing electrochemical sensors for H₂S detection using room temperature ionic liquids as electrolytes. To this end, this study compared the electrochemical behavior at a Pt-microdisk electrode of H₂S in [Bmim]BF₄, [C₃OHmim]BF₄, and MEA–[C₃OHmim]BF₄ (1:6.2 molar ratio) using cyclic voltammetry. In both [Bmim]BF₄ and [C₃OHmim]BF₄, the electrochemical oxidation/reduction of H₂S requires too high/low a potential (about 1.5/–1.6 V vs. Ag/Ag⁺), and these ionic liquids are therefore unsuitable for H₂S detection. Addition of monoethanolamine (MEA) to [C₃OHmim]BF₄ significantly increases the H₂S absorption capacity through the chemical reaction between MEA and H₂S. This chemical absorption enhances the electrochemical response of H₂S, in particular generating electroactive HS⁻ ions that lead to an additional and independent anodic peak at around –0.4 V vs Ag/Ag⁺ which is suitable for H₂S sensing. There is a good linear relationship between the peak current and H₂S

Download English Version:

https://daneshyari.com/en/article/6600928

Download Persian Version:

https://daneshyari.com/article/6600928

Daneshyari.com