Contents lists available at ScienceDirect

Electrochemistry Communications

journal homepage: www.elsevier.com/locate/elecom

A novel electrochemical chiral interface based on sandwich-structured molecularly imprinted SiO₂/AuNPs/SiO₂ for enantioselective recognition of cysteine isomers

Jie Zhang^a, Wensheng Tan^b, Yongxin Tao^a, Linhong Deng^a, Yong Qin^a, Yong Kong^{a,*}

^a Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China ^b Changzhou Key Laboratory of Large Plastic Parts Intelligence Manufacturing, Changzhou College of Information Technology, Changzhou 213164, China

ARTICLE INFO

Keywords: Electrochemical chiral interface Sandwich structure Molecularly imprinted SiO₂/AuNPs/SiO₂ Enantioselective recognition Cys isomers

ABSTRACT

 SiO_2 nanospheres were synthesized by the sol-gel method using tetraethoxysilane (TEOS) as the precursor, which was then modified with 3-aminopropyltriethoxysilane (APTES) for the grafting of $-NH_2$ to the SiO_2 surface. Au nanoparticles (AuNPs) were anchored to the $-NH_2$ grafted SiO_2 , and then L-cysteine (L-Cys) templates were introduced to the $SiO_2/AuNPs$ through forming Au–S bond. Another layer of SiO_2 was then coated on the L-Cys doped $SiO_2/AuNPs$ as the coating layer, and then the templates were removed by calcination to form a sandwich-structured molecularly imprinted $SiO_2/AuNPs/SiO_2$. Finally, the molecularly imprinted chiral interface was applied for electrochemical enantioselective recognition of Cys isomers, and discernible differences in the current signals could be observed on the differential pulse voltammograms (I_{D-cys}/I_{L-cys} , 2.36).

1. Introduction

Amino acids are inarguably among the most important and predominant chiral compounds in nature [1]. Among the chiral amino acids, L-cysteine (L-Cys) plays a key role in the biological activity of proteins whereas D-Cys may produce non-negligible cytotoxicity [2], and thus it is of great importance to effectively discriminate Cys isomers. Among the reported methods for recognition of chiral amino acids, electrochemistry has shown great potential [3–5], because it can convert chiral recognition events into discernible changes in electrochemical signals. Although Raman spectrometry [6] and colorimetry [7] have been applied for recognition of L/D-Cys, little attention has been paid to the enantioselective recognition of Cys isomers via electrochemical methods.

The past decades have witnessed the applications of molecular imprinting technique (MIT) in chiral recognition [8], and the enantioselective recognition of chiral amino acids and other chiral compounds by combining MIT and electrochemistry has been reported by several research groups [9–14]. However, the commonly used matrixes in MIT are polymers, which are often suffered from the collapse of imprinted cavity during the removal of template molecules under harsh conditions. Therefore, the design of structurally rigid materials for MITbased chiral recognition still remains as an urgent and challenging task.

Herein, a novel electrochemical chiral interface based on sandwich-

structured molecularly imprinted SiO₂/AuNPs/SiO₂ is constructed, which is then used for the recognition of Cys isomers. Since AuNPs have a high affinity for Cys via forming Au–S bond, the templates of L-Cys can be stably combined with the AuNPs at the chiral interface; meanwhile, the high mechanical strength of SiO₂ in the hybrids is favorable for the preservation of the complementary cavities after the L-Cys templates are removed. Therefore, electrochemical chiral recognition of Cys isomers can be achieved at the molecularly imprinted SiO₂/AuNPs/SiO₂ chiral interface.

2. Experimental

2.1. Reagents and apparatus

L/D-Cys, tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) were purchased from Aladdin Chemistry Co., Ltd. (China). Other chemicals not mentioned were received from Sinopharm Chemical Reagent Co. (SCRC, China). All solutions were prepared with ultrapure water (Milli-Q, Millipore).

FT-IR spectra were measured by a FTIR-8400S spectrometer (Shimadzu, Japan). XRD analysis was carried out on a Rigaku D/max 2500PC diffractometer. SEM and TEM images were recorded on a Supra55 field-emission scanning electron microscope (Zeiss, Germany) and a JEM 2100 transmission electron microscope (JEOL, Japan),

https://doi.org/10.1016/j.elecom.2017.11.016

Received 16 October 2017; Received in revised form 16 November 2017; Accepted 16 November 2017 Available online 20 November 2017 1388-2481/ © 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail address: yzkongyong@cczu.edu.cn (Y. Kong).

respectively. The UV–vis spectra were measured by a U-3900 UV–vis spectrophotometer (Hitachi, Japan). All electrochemical measurements were performed on a CHI 660D electrochemical workstation in a conventional three-electrode cell.

2.2. Synthesis of L-Cys doped SiO₂/AuNPs

SiO₂ nanospheres were synthesized by the sol–gel method using TEOS as the precursor [15], and then 400 mg of the SiO₂ nanospheres were dispersed into 20 mL of isopropanol. Next, 0.1 mL of APTES was added to the dispersion, and the mixture was heated to 85 °C and stirred for 2 h. The products were centrifuged, washed and lyophilized at -40 °C, and $-NH_2$ grafted SiO₂ was obtained.

The $-NH_2$ grafted SiO₂ was dispersed in 40 mL ethanol, and then the dispersion (pH 5.8) was added dropwise to 10 mL AuNPs solution prepared according to the method previously reported [16]. Due to the electrostatic attractions between negatively charged AuNPs and the protonated $-NH_2$ [17], AuNPs were anchored to the $-NH_2$ grafted SiO₂. Next, 0.5 g of polyvinylpyrrolidone (PVP) stabilizer was added to the solution. After being stirred overnight and centrifuged, the obtained SiO₂/AuNPs was dispersed in 10 mL water, and the dispersion was added to 1 mL L-Cys aqueous solution (4 mM). L-Cys templates were doped into the SiO₂/AuNPs through forming Au–S bond. After reaction for 12 h, the L-Cys doped SiO₂/AuNPs were collected by centrifugation and lyophilized at -40 °C.

2.3. Preparation of sandwich-structured molecularly imprinted SiO₂/AuNPs/SiO₂

50 mg of the L-Cys doped SiO₂/AuNPs was dispersed in the mixture of water (57 mL), ethanol (26 mL) and ammonia (1.5 mL), and then 1.5 mL TEOS dissolved in ethanol (3.6 mL) was added dropwise to the mixture. After continuous stirring for 18 h, the formed sandwichstructured SiO₂/AuNPs/SiO₂ was collected, thoroughly washed and dried. The SiO₂/AuNPs/SiO₂ was then calcined at 500 °C for 2 h to remove the L-Cys templates, and therefore molecularly imprinted SiO₂/ AuNPs/SiO₂ was obtained. The whole process illustrating the preparation of molecularly imprinted SiO₂/AuNPs/SiO₂ is shown in Fig. 1A. For the control experiment, non-imprinted SiO₂/AuNPs/SiO₂ was also prepared by the same procedures without the addition of L-Cys templates.

2.4. Electrochemical recognition of Cys isomers

100 mg of the imprinted SiO₂/AuNPs/SiO₂ or non-imprinted SiO₂/AuNPs/SiO₂ was dispersed in 0.3 mL water, and then 40 μ L of the dispersion was dropped onto a piece of indium tin oxide (ITO, 4 \times 2 cm) and left to be air dried.

The molecularly imprinted SiO₂/AuNPs/SiO₂ coated ITO (MISiO₂/ ITO) was immerged into 25 mL of 0.1 M PBS containing 1 mM L- or D-Cys (pH = 7.0), and then a positive potential of 0.25 V was exerted to the imprinted electrode for 1000 s for the rebinding of L/D-Cys (isoelectric point of Cys, 5.05 [18]). Next, the residual L/D-Cys in the solution was determined by differential pulse voltammetry (DPV) using glassy carbon electrode (GCE) as the working electrode at a scan rate of 8 mV s⁻¹, and the peak currents ratio was calculated to assess the recognition ability of the MISiO₂/ITO.

3. Results and discussion

3.1. Characterization of imprinted SiO₂/AuNPs/SiO₂

Fig. 1B shows the FT-IR spectra of L-Cys, L-Cys doped $SiO_2/AuNPs/SiO_2$ and imprinted $SiO_2/AuNPs/SiO_2$. For L-Cys (curve a), the peaks at

2552, 2081 and 692 cm⁻¹ are attributed to S–H stretching, C–O stretching and C–S bending, respectively [19], and the characteristic peaks of L-Cys still exist on the L-Cys doped SiO₂/AuNPs/SiO₂ (curve b), suggesting that L-Cys templates are doped into the matrix with the aid of AuNPs. The L-Cys templates can be removed through calcination, since the characteristic peaks of L-Cys disappear completely on the spectra of imprinted SiO₂/AuNPs/SiO₂ (curve c).

The XRD patterns of SiO₂, SiO₂/AuNPs and imprinted SiO₂/AuNPs/ SiO₂ are shown in Fig. 1C. The typical peak centered at 23° is characteristic of SiO₂ (curve a), and the peaks at around 38.2°, 44.5°, 64.7° and 77.6° can be assigned to the (111), (200), (220) and (311) crystalline planes of Au (JCPDS 1-1172, curve b) [20]. The dominant crystal growth plane is (111), implying the crystalline structure of SiO₂/AuNPs is face centered cubic [20]. Noted that all the diffraction peaks of Au and SiO₂ can be found on the imprinted SiO₂/AuNPs/SiO₂ (curve c), indicating that the crystalline structure of SiO₂/AuNPs is not altered after calcination.

The UV–vis spectra of AuNPs, SiO₂/AuNPs and imprinted SiO₂/AuNPs/SiO₂ are shown in Fig. 1D. The AuNPs show a sharp surface plasmon resonance (SPR) absorption at 520 nm, which is due to the collective oscillation of free electrons in colloid AuNPs [21]. The characteristic band of AuNPs can still be observed on the spectra of SiO₂/AuNPs and imprinted SiO₂/AuNPs/SiO₂ with a slight red-shift (525 nm), suggesting successful incorporation of AuNPs to the $-NH_2$ grafted SiO₂ and stable existence of AuNPs even after calcination at 500 °C. This slight red-shift could be ascribed to the increase in the local refractive index of the SiO₂ shell surrounding the AuNPs [22].

The FESEM images of SiO₂, SiO₂/AuNPs, L-Cys doped SiO₂/AuNPs/ SiO_2 and imprinted $SiO_2/AuNPs/SiO_2$ are recorded. The spherical SiO_2 nanoparticles prepared by the classical Stöber method [15] show an average diameter of 320 nm (Fig. 2A). After the AuNPs are grafted to the silica nanospheres, a slight aggregation of the formed SiO₂/AuNPs is observed (Fig. 2B), which could be attributed to the large surface van der Waals force among the particles of AuNPs [23]. After another layer of SiO₂ is coated on the SiO₂/AuNPs via TEOS hydrolysis, the aggregation is attenuated and the size of the sandwich-structured hybrids (SiO₂/AuNPs/SiO₂) is increased to 460 nm (Fig. 2C), indicating the thickness of the SiO₂ outlayer is around 70 nm. After calcination, the obtained imprinted SiO₂/AuNPs/SiO₂ retains the similar structure to that of doped SiO₂/AuNPs/SiO₂ (Fig. 2D), suggesting the as-prepared SiO₂/AuNPs/SiO₂ is structurally rigid and is beneficial for the preservation of complementary cavities of the templates during the calcination process.

The successful grafting of AuNPs and formation of the sandwichstructured hybrids are further verified by TEM characterization. The AuNPs are homogeneously distributed on the surface of the silica inner layer (Fig. 2E), and the lattice fringes of 0.23 nm (Fig. 2F) correspond to lattice spacing of the (111) plane of the AuNPs [24], implying the successful grafting of AuNPs. Noted that PVP plays an important role in the stable existence of AuNPs, since it is a good stabilizing agent for transition metal particles [25]. The TEM image of the SiO₂/AuNPs/SiO₂ (Fig. 2G) clearly reveals that the AuNPs are located between two layers of silica, further confirming the formation of the sandwich-structured hybrids. In addition, the thickness of the silica outlayer is evaluated to be around 70 nm, agreeing well with the FESEM results.

3.2. Electrochemical chiral recognition of Cys isomers with imprinted SiO_2/AuNPs/SiO_2

Electrochemical chiral recognition of Cys isomers with the imprinted SiO₂/AuNPs/SiO₂ is studied. The MISiO₂/ITO is first immerged in 1 mM L- or D-Cys dissolved in 0.1 M PBS (pH = 7.0), and then a positive potential of 0.25 V is exerted to the imprinted electrode for the rebinding of L- or D-Cys. Next, the residual L- or D-Cys in the solution is Download English Version:

https://daneshyari.com/en/article/6601007

Download Persian Version:

https://daneshyari.com/article/6601007

Daneshyari.com