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a b s t r a c t

In this paper we investigate the onset of convection in a horizontally partitioned porous layer which is
heated from below. Identical sublayers are separated by thin impermeable barriers. A linear stability
analysis is performed, and dispersion relations are obtained directly and explicitly for two- and three-
layer configurations. A systematic numerical procedure is devised to compute the dispersion relation
for an arbitrary number of sublayers, but from this it is possible to guess the correct analytical form of
the dispersion relation for general cases.

Neutral stability curves are found to organise themselves into natural groups of N members when there
are N sublayers. When the disturbance wavenumber, k, is large, each member of any group lies within an
O(k�1) distance of all other members, but within an O(1) distance of other groups. When the number of
sublayers is large, the system tends towards one with a critical Darcy–Rayleigh number of 12 and a crit-
ical wavenumber of zero; this is the well-known property of a single porous layer with constant heat flux
boundary conditions. An asymptotic analysis is performed in order explore these two apparently dispa-
rate configurations. Finally, another asymptotic analysis is used to determine the critical Rayleigh num-
ber and its associated wavenumber when the number of sublayers is large.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the present paper we consider the onset of convection within
a horizontal porous layer heated from below which has multiple
infinitesimally thin impermeable horizontal partitions embedded
within it. The resulting sublayers are then identical in all respects,
including their height. Thus the sublayers are mechanically decou-
pled but remain thermally coupled since the interfaces present no
barrier to the conduction of heat. This work forms an extension to
our previous paper [1] which was concerned with a two-layer
system.

Many authors have considered how the presence of layering af-
fects the onset of convection and the subsequent nonlinear cellular
flow. Being motivated mostly by geothermal applications, these
layered systems generally tend to have interfaces though which
fluid may flow, unlike the topic of the present paper. The first per-
son to consider layering was Georghitza [2] who considered weak
layering in the sense that the difference in the permeabilities of the
two layers was small. On the other hand, Donaldson [3] considered
a two-layer system where one of the sublayers is impermeable and
computed nonlinear two-dimensional flow patterns. Riahi [4] con-
sidered what might be termed a three-layer configuration where a

porous layer is sandwiched between two impermeable but con-
ducting regions of infinite height. He conducted a weakly nonlinear
analysis and found that there is a region in parameter space within
which two-dimensional rolls do not form the favoured convection
pattern; this role is passed to a square-cell pattern. Further analy-
ses of this type may be found in Mojtabi and Rees [5] and Rees and
Mojtabi [6]. Masuoka et al. [7] provided some criteria for the onset
of convection in a two-layer configuration where both sublayers
are porous, and Rana et al. [8] conducted a numerical study of a
three-layer configuration which was believed to model well the Pa-
hoa reservoir in Hawaii.

A more systematic approach to these problems was provided in
the 1980s by McKibbin and co-workers who provided comprehen-
sive data on the onset problem [9], post-critical heat transfer [10],
the effects of thin highly permeable cracks [11] and almost imper-
meable sheets [12]. Indeed, the present paper may also be regarded
as an extension of [12] to the case where the sheets are completely
impermeable. Jang and Tsai [13] considered a three-layer system
where the middle sublayer is impermeable but conducting, and
of finite thickness. They showed that the system is at its most sta-
ble when the partition is located centrally, and the system also be-
comes more stable as the partition thickness increases or the
partition conductivity decreases. The paper by Postelnicu [14] is
also of relevance.

Of some interest is the fact that the presence of layering can
cause the neutral stability curve to adopt a shape other than that
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with the classical single minimum. McKibbin and O’Sullivan [9]
found cases where the neutral curve has a double minimum, and
it is often the case that a small change in a system parameter (such
as the permeability of one of the sublayers) causes a discontinuous
change in the critical wavenumber; this is due to the neutral curve
having two minima and the small change in the parameter has
simply caused the identity of the mode with the smaller Rayleigh
number to swap from one wavenumber to the other. Rees and Ri-
ley [15] provided a systematic analysis of two- and three-layer
configurations and they traced out the locus in parameter space
where such bimodality arises. They also found that it is possible
to have three-layer configurations which are trimodal, i.e. that
three minima exist each having the same Rayleigh number. More-
over, they also determined regions in parameter space where
square-cell convection forms the stable pattern.

In the present paper we will be considering the onset of convec-
tion in a porous layer where the layering is brought about by hav-
ing equally-spaced infinitesimally thin horizontal partitions within
the layer. Thus all the sublayers are identical in all of their proper-
ties. Such a configuration is an extension of the recent work by
Genç and Rees [1] who considered a two-layer system. Much of
the analysis we present arises from the dispersion relation which
may be calculated by hand fairly easily for two- and three-layer
systems, but which may be computed easily for larger numbers
of sublayers. It is found that this type of layered system has some
unusual properties, namely (i) the neutral curves clump together
into groups of N curves when there are N sublayers; (ii) that the
curves comprising each group lie within an O(k�1) distance of
one another when the wavenumber, k, is large; (iii) the critical
Darcy–Rayleigh number and wavenumber for the first mode tend
towards the respective values 12 and 0 as the number of sublayers
increases, which corresponds to the single-layer values when con-
stant heat flux boundary conditions are applied.

2. Governing equations

We consider the onset of convection in a horizontal porous
layer which is comprised of a number of identical sublayers which
are themselves separated by infinitesimally thin impermeable

partitions. Therefore, while fluid may not pass between sublayers,
conductive heat transfer is unhindered by the presence of these
partitions. A five-sublayer version of the configuration we consider
is shown in Fig. 1.

We will assume that the Boussinesq approximation is valid, that
the porous medium is homogeneous and isotropic, that the phases
are in local thermal equilibrium, and that the fluid motion satisfies
Darcy’s law with the additional effect of buoyancy. Each sublayer
has height, H, which means that a system comprised of N sublayers
has height, NH. We will use H as the value against which to nondi-
mensionalise the governing equations, rather than NH; this has the
advantage of yielding much easier comparisons between cases
which consist of different numbers of sublayers, particularly the
classical single-layer Darcy–Bénard problem.

Nomenclature

A, B, C, D constants
c constant in Eq. (43)
d vector
f, g reduced forms of perturbations
F the dispersion relation
ĝ gravity
H height of each sublayer
k disturbance wavenumber
k̂ scaled value of k
K permeability
M;N 4 � 4 matrices
N number of sublayers
p pressure
Ra Darcy–Rayleigh number
S scaled value of Ra
t time
u horizontal velocity
v vector of coefficients
w vertical velocity
x horizontal coordinate
z vertical coordinate

Greek symbols
a exponent
b thermal expansion coefficient
d equal to N�1/2

DT reference temperature drop
h temperature
H disturbance temperature
j thermal diffusivity
k, r constants
l dynamic viscosity
q density
w streamfunction
W disturbance streamfunction

Subscripts and superscripts
(b) basic state
c critical conditions
j sublayer index
m iteration number
0 derivative with respect to z
1,2, . . . pertaining to a sublayer

Fig. 1. Depicting a horizontally layered porous medium consisting of five sublayers.
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