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a b s t r a c t

The paper deals with collisions resulting from the interaction between particles (droplets, bubbles) and
turbulent eddies of the continuous fluid medium (gas or liquid). A statistical model is developed for pre-
dicting the collision rate. This model is valid for arbitrary values of the particle-to-fluid density, the par-
ticle inertia parameter, and the ratio between the particle size and the fluid turbulent lengthscale.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The rate of coagulation due to turbulent collisions of solid par-
ticles, liquid droplets or gas bubbles is of importance in many envi-
ronmental and industrial processes. A large body of theoretical
studies of the collision rate induced by turbulence has been per-
formed because of practical significance of the problem. Relatively
simple solutions to this problem may be apparently derived only
for homogeneous isotropic turbulence. Two analytical solutions
are most familiar in the literature, corresponding to the limiting
cases of zero-inertia and high-inertia heavy particles. The first
solution is valid for fine particles whose response time is much
shorter than the Kolmogorov timescale. Fine particles completely
follow the velocity fluctuations of the carrier fluid, and their colli-
sion rate is determined by interaction with small-scale energy-dis-
sipating turbulent eddies [1]. The second solution pertains to the
opposite case of coarse high-inertia particles, whose motion is sta-
tistically independent and similar to the chaotic motion of mole-
cules in the kinetic theory of rarefied gases. The collision rate of
coarse particles is determined by their interaction with large-scale
energy-containing turbulent eddies [2]. The major theoretical diffi-
culties in predicting the turbulence-induced collision rate arise for
particles of intermediate size, when the ratios of the particle re-
sponse time to the turbulence micro- and macroscales are finite
(sk 6 sp 6 TL). In this situation, it is necessary to take into consider-
ation the interactions of particles with all the spectrum of turbu-

lent eddies as well as to account for the correlation of motion of
neighbouring particles. More advanced at present are models for
predicting the turbulent rate of heavy small particles, when the
drag force of all the interfacial forces is only essential (e.g., see
[3–6]). The analytical dependence obtained in [7] for heavy small
monodisperse (identical) particles describes the contribution of
the particle interaction with all the fluid turbulent eddies to the
collision rate and is valid over the entire range of particle inertia
(from the zero-inertia to the high-inertia limit). In [8], this depen-
dence is generalized to the case of turbulent collisions of bidisperse
(different) particles. It is worth nothing that a substantial increase
in the collision-coagulation rate makes the effect of particle
preferential concentration [5,7–16]. A significant role in the
collision-coagulation rate of inertial particles may also play the for-
mation of fold caustics with a multivalued particle velocity field
[17–19]; this mechanism can give an extra contribution to the
collision rate due to the so-called sling effect [20].

The theory of turbulent collisions of particles suspended in a
medium of like density as well as of light particles and bubbles dis-
persed in a liquid is advanced to a far less extent. In these cases, the
turbulence-induced collision rate, as a rule, is determined by anal-
ogy with molecular collisions in the kinetic theory of gases, and the
relative velocity between particles whose sizes belong to the iner-
tial interval is expressed in terms of turbulence dissipation rate
and particle diameter as (ed)1/3 (e.g., see [21–23]). The present pa-
per deals with a statistical model for the turbulent collision rate,
which is valid over the entire range of the particle-to-fluid density.
This paper extends the approach used in [7,8] for heavy particles
whose size is much less that the Kolmogorov lengthscale to the
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case of both arbitrary particle-to-fluid density and arbitrary ratio
between the particle size and the fluid turbulent lengthscale. The
model being presented describes the collisions caused by the rela-
tive velocity between neighboring particles (the so-called turbu-
lent transport effect), but does not account for the nonuniform
spatial distribution of particles (the accumulation effect). The ef-
fects of sedimentation, hydrodynamic and molecular forces,
Brownian motion, and collision efficiency are not taken into con-
sideration as well. The volume fraction of particles is assumed to
be low enough for the two-phase system to be treated as a dilute
dispersed medium. Moreover, the particles are assumed to be
spherical and undeformable and their rotation is not allowed for.

2. Collision kernel

In homogeneous isotropic turbulence, there is a spherical sym-
metry of the relative motion of two colliding particles. Therefore,
the number of collisions of particles belonging to different groups
per unit volume per unit time is defined as [5,9]

R12 ¼ bN1N2; b ¼ 2pd2hjwrðdÞjiCðdÞ; ð1Þ

where Na is the number of particles of group a, hjwrji is the mean
radial relative velocity magnitude of two particles, and C is the ra-
dial distribution function. Here hjwr ji and C quantify, respectively,
the relative velocity between neighboring particles (the turbulent
transport effect) and the nonuniform particle spatial distribution
(the accumulation effect). In the present paper, the accumulation
effect is not taken into account, and further C(d) is assumed to be
equal to unity.

The starting point of the model under consideration is the
assumption that the one-point joint PDF of fluid and particle veloc-
ities as well as the two-point PDF of fluid velocities are the Gauss-
ian distributions (Laviville et al. [24]). These assumptions may
derive the following expression for the mean radial relative veloc-
ity magnitude of two colliding particles [7,8]:

hjwrðdÞji ¼
2
p

v 021 þ v 022 � 2f12v 01v 02
� �� �1=2

; ð2Þ

f12 ¼ finFðdÞ; fin ¼ n1n2; na ¼
hu0kv 0aki

hu0ku0ki
1=2hv 0akv 0aki

1=2 :

Here f12 is the correlation coefficient of the radial velocity com-
ponents of two colliding particles due to their interaction with the
fluid turbulence, fin is the correlation coefficient of the velocities of
two particles due to their inertia, and na denotes the fluid–particle
velocity correlation coefficient that is defined as the ratio of the
fluid–particle velocity covariance to their variances. The space lon-
gitudinal correlation function F(d) allows for the spatial correlation
of the fluid velocities at two points separated by a distance d,
which is equal to the spacing between the centers of colliding
particles upon their contact. As is seen, the inertia-induced two-
particle correlation coefficient, fin, is equal to the product of the
fluid–particle correlation coefficients, na, and the total two-particle
correlation coefficient, f12, is equal to the product of the inertia-in-
duced two-particle correlation coefficient, fin, and the longitudinal
correlation function, F(d).

In view of (A6), Eqs. (A4) and (A5) yield

hv 0akv 0aki¼
2Xaþ2A2X2

aþz2

2Xaþ2X2
aþz2

hu0ku0ki; hu0kv 0aki¼
2Xaþ2AX2

aþz2

2Xaþ2X2
aþz2

hu0ku0ki; ð3Þ

fin¼
ð2X1þ2AX2

1þz2Þð2X2þ2AX2
2þz2Þ

ð2X1þ2X2
1þz2Þð2X1þ2A2X2

1þz2Þð2X2þ2X2
2þz2Þð2X2þ2A2X2

2þz2Þ
h i1=2 : ð4Þ

In the limit of high Reynolds numbers (z ? 0 for Rek !1) when
neglecting the crossing trajectory effect (c ? 0), Eqs. (3) reduce to
the well-known relations [25] which correspond to the one-scale
exponential autocorrelation function WL(s) = exp(�s/TL)

hv 0akv
0
aki ¼

1þ A2Xa

1þXa
hu0ku0ki; hu0kv 0aki ¼

1þ AXa

1þXa
hu0ku0ki:

For a monodisperse system of particles, the inertia-induced
two-particle velocity correlation coefficient (4) reduces to

fin ¼
ð2Xþ 2AX2 þ z2Þ2

ð2Xþ 2X2 þ z2Þð2Xþ 2A2X2 þ z2Þ
: ð5Þ

Fig. 1 shows fin as a function of the particle inertia parameter X
at high Reynolds numbers when z = 0. For heavy particles dis-
persed in a light continuous medium (qp/qf =1, A = 0), a monoto-
nous decrease in fin takes place from unity to zero as X increases.
However, in the case of finite values of the particle-to-fluid density
qp/qf when A > 0, the dependence fin(X) has a minimum. It is worth
nothing that, in this case, the inertia-induced two-particle velocity

Nomenclature

A particle-to-fluid density parameter
a0 dimensionless acceleration magnitude
d radius of the collision sphere, (d1 + d2)/2
da particle diameter
fu response coefficient
L turbulence spatial macroscale
Rek Taylor-scale Reynolds number
Sll longitudinal structure function
St Stokes number, sp0/sk

TL Lagrangian integral timescale
TLp eddy-particle interaction timescale
t time
ui fluid velocity
u0i fluctuating fluid velocity

u
02 fluid velocity variance, hu0ku0ki=3
hu0kv 0aki fluid–particle velocity covariance
Vr mean velocity between the particulate and fluid phases
vai particle velocity
v 0ai fluctuating particle velocity
v 02a particle velocity variance, hv 0akv

0
aki=3

Greek symbols
b collision kernel
c drift parameter, |Vr|/u

0

e turbulence dissipation rate
fin two-particle correlation coefficient
g Kolmogorov lengthscale, ðm3

f =eÞ
1=4

na fluid–particle correlation coefficient
mf fluid kinematic viscosity
qf, qp fluid and particle densities
sk Kolmogorov timescale, ðmf =eÞ1=2

sp particle response time
sp0 Stokes particle response time, qpd2

=18qf mf

sT Taylor differential timescale
X particle inertia parameter, sp�=TLp

Subscripts
a particle group, 1 or 2
f fluid
p particle
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