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We speculate about the existence of a “square-root Tafel dependence” for simple one stage anodic/cathodic
electron transfer reactions in ionic liquids. In this dependence, the logarithm of the current depends linearly
on the square-root of electrode potential. The modified law is a consequence of ion crowding in the electrical
double layer at high charges of the electrode. It may be expected that this effect may be observed for slow
reactions at large electrode polarisations, yet not triggering electrochemical decomposition of ionic liquids, and
only if diffusion limitations on the transport of reactants are absent.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In electrochemistry the applied voltage is used as a driving force of
reaction, by making the reaction free energy more negative [1]. For
this to operate, the difference of electrostatic potential between the
electrode and the position where the reactant is located must be
substantial. To ensure this, concentrated buffer electrolytes are used to
localize the voltage drop close to the electrode. Finer effects are
known to take place, when it is not possible to localise the potential
drop of the double layer solely between the electrode and reaction
plane. This leads to the well known ψ '-effect, or Frumkin correction
to current voltage characteristics [2–4].

Over the last decade electrochemists have taken great interest in the
kinetics of electrochemical reactions in room temperature ionic liquids
(RTILs) [5,6]. The motivation for replacing the electrolytic solution
with solvent-free electrolyte is as follows: (i) RTILs can sustain higher
voltages before their ions undergo electrochemical transformations
than aqueous electrolytes, and the polarisation to drive the reaction of
dissolved species can bemade higher, speeding up the reaction kinetics
(although they may not always beat organic solvents in this respect);
(ii) RTILs are not volatile; (iii) due to strong Coulomb correlations in
RTILs — ‘dense room-temperature ionic plasmas’, the phenomenon of
overscreening can make the potential difference between the electrode
and reaction plane larger than the potential drop across the whole
double layer. This is expected to occur at low or moderate deviation

from the potential of zero charge (pzc), but at least there the reaction
rate will be amplified. These expectations are discussed in a recent
review article [7].

Here, we will, however, focus on the limit of large deviations from
the pzc, promoting higher reaction rates. At large electrode potentials
the structure of the electrical double layer in RTILs is affected by the
so-called crowding effect, because there is a limit on themaximum con-
centrations of ions, cmax, which the counterions populating the double
layer cannot exceed. Hence, counterions start to line up layer-by-layer,
and unlike in the Gouy–Chapman theory, the characteristic thickness
of the double layer starts to grow. In the context of RTILs this effect
was put forward in Ref. [8], and analysed in detail in a series of reports
[9–11]; experimental verification and approval by atomistic as well as
coarse-grained molecular dynamic simulations have been reported in
Refs. [12–17]; for a review see also the detailed discussion in Ref.[7].
Schematic drawing of double layer structures in overscreening and
crowding modes is shown in Fig. 1.

When the rate-determining stage is the electron-transfer process
across the interface, the cathodic or anodic currents of elementary
redox-reactions in ordinary electrolytes at high large overvoltage are
governed by the asymptotic Tafel law, in which the logarithm of the
current depends linearly to the potential drop across the double layer,
even if it is not at all confined between the electrode and reactant
plane. We will show, however, that under the same conditions, in
RTILs the logarithm of the current may instead assume a linear depen-
dence on the square-root of the electrode potential. We denote this
correlation “square-root Tafel law”. Note that, strictly speaking, we
will deal here not with the dependence on the over potential, but on
the electrode potential far from pzc and equilibrium.
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This law will not be seen, if screened by the diffusion limiting cur-
rent. Since the diffusion of ions in RTILsmay be two orders ofmagnitude
slower than in “ordinary” (aqueous) electrolytes, removal of diffusion
limitations may be difficult. The use of rotating disc microelectrodes or
other means to undermine diffusion limitations will be needed for ex-
perimental verifications of this manifestation of the peculiar structure
of the electrical double layer in RTILs. This law could possibly be ob-
served also at elevated temperatures, since electrochemical measure-
ments with high precision in ionic liquids at over 200 °C have already
been conducted[18].

2. Derivation of the “square-root Tafel dependence”

Consider for definiteness an anodic process, where anions are
discharged at positively charged electrodes. For large voltages, the elec-
tric current density canbe approximated by [19], j=A ⋅ (1− j/jd)cr ⋅ exp
{βe[U−Ψ(U)]/kBT}. Here, e is the elementary charge, U is the potential
drop across the double layer, Ψ is the electrostatic potential on the
reactant planewhich itself is a function of U, cr is themaximum possible
concentration of reactants at the reaction plane, and jd is the diffusion
limiting current. The factor (1− j / jd) which takes into account possible
exhaustion of the reactants if they cannot rapidly replace those that
have been converted into products, 0 b β b 1 is the transfer coefficient
for the anodic current, and the pre-factor A accommodates all the pre-
exponential factors that are independent of electrode potential
(say, electronic density and electronic tunnelling factor), as well as the
factor exp{−βe[U0 − Ψ0]/kBT} where U0 and Ψ0 are the values of U
andΨ at equilibrium.

Note that we assume that cr is independent of the electrode poten-
tial. The potential dependence of cr depends on the competition be-
tween the short range and electrostatic interactions of the reactants
with the ions of the RTIL; such dependence, if present will therefore
be ionic liquid specific [20].

Solving the above equation for j and using hereafter, for compact-
ness of notation, dimensionless potentials (measured in units of
thermal voltage kBT/e which at room temperature is close to 26 mV),
u = eU/kBT, ψ= eΨ/kBT, we obtain,

j¼ A � cr � eβ u−ψ uð Þ½ �

1þ 1
id
A � cr � eβ u−ψ uð Þ½ �

: ð1Þ

If the second term in the denominator is small, i.e. for very slow re-
actions (small values of A and large id), the reaction rate is determined
by the electron transfer stage, and

j≈A � cr � eβ u−ψ uð Þ½ �
: ð2Þ

Note that these equations do not take into account migration lim-
itations, which are expected to be unimportant in highly concentrat-
ed electrolytes such as RTILs. Furthermore these equations are based
on a simplistic slow discharge theory. Corrections coming from the
modern quantum electrochemistry will be considered in the
Discussion.

So far therewas nothing new in these expressions, and they apply to
both ordinary aqueous buffer electrolytes and RTILs. Once we consider
the asymptotic form of ψ(u) at large electrode potentials valid for
RTILs we will, however, get a new current–voltage law.

In order to evaluate ψ(u) we need several assumptions. The first one
utilizes the fact that in order to take part in the reaction the reactant ions
must come very close to the electrode, so that the resulting electric field
is constant in the gap between the electrode surface and the ‘reaction
plane’. It is essentially the same as to assume the reactants sitting on
the ‘Helmholtz plane’. Hence, due to the Gauss theorem [21],

εH

kBT
e

u−ψ uð Þ½ �
d

¼ 4πσ ð3Þ

where εH is the effective dielectric constant in the compact layer (for
RTIL expected to be on the order of 2), d is its thickness, and σ is the
surface charge density on the electrode (hereafter we use Gaussian
units). To complete the task of evaluating ψ(u) we need to find the
σ(u)-dependence.

Reference [8] has presented a mean field theory description that re-
sulted in an analytical formula for σ(u) for all electrode potentials, as
well as a simple expression for it in the large-voltage limit. However,
it was shown in the same report that based on the charge conservation
law, the limiting behaviour of σ(u) can be obtained without a model,
using the scaling-type analysis, which we reproduce below.

In the crowding regime,

σ¼−ecmaxlc ð4Þ

where lc is the effective thickness of the crowded region. Going for a
moment back to dimensional potential and electric field, we may
estimate the electric field at the Helmholtz plane, E, as E ≈ − Ψ/lc. On
the other hand, E = 4πσ / ε, where ε is the effective dielectric constant
of the liquid (for RTILs ~10) [22,23]. Hence,

lc≈−εΨ=4πσ : ð5Þ

Inserting this expression for lc into Eq. (4), we get σ= ecmaxεΨ/4πσ,
and thus

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ecmaxεΨ=4π

p
: ð6Þ

To the accuracy of the factor of
ffiffiffi
2

p
, the r.h.s. of Eq. (6) coincides

with the expression given by the mean-field theory. Returning to
dimensionless potentials, and combining Eqs. (6) and (3) we obtain
εH u−ψ uð Þð Þ=d¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2cmax=kBTð Þεψ

p
.

It will be convenient to rearrange this last equality, using two pa-
rameters: the quantity equivalent to the inverse Debye length,

κ ≡ 1
LD

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2c0
εkBT

s
; ð7Þ

Fig. 1. A sketch of the double layer structure in ionic liquids near a negatively charged
electrode under (a) overscreening and (b) crowding polarisation regimes. Red, blue and
green spheres represent cations, anions and reacting species, respectively. Dotted line
indicates the Helmholtz plane. Solid lines mimic the corresponding potential profiles.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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